scholarly journals Bacteriological Evaluation of Nigerian Paper Currency (Naira Notes) Circulating In Owerri, Imo State, Nigeria

Author(s):  
Joy Nkeiruka Dike-Ndudim ◽  
Gladys A. Onyegbule ◽  
Seraphim Chinyere Ifegbuike ◽  
Chizaram Winners Ndubueze ◽  
Victor Udochukwu Enwere ◽  
...  

Generally, the contamination of currencies with various microbial species is increasingly being reported. This usually results from improper handling during exchange of goods, services and certain environmental factors. This study on the bacteriological evaluation of the Nigerian paper currency (Naira notes) circulating in Owerri, Imo State was carried out with the aim of evaluating the prevalence of bacteria contaminants of Nigerian currency notes in circulation. A total of One hundred and twenty (120) Naira notes of ₦5, ₦10, ₦20, ₦50, ₦100, ₦200, ₦500 and ₦1000 denominations were collected in separate polythene bags from traders, students, hawkers, meat sellers, food vendors, taxi drivers, keke drivers and banks for the study. The notes were chosen on the basis of denominations and physical appearance (Mint, Neat, dirty, very dirty and mutilated). Each of the notes was inserted into a sterile bottle containing 10mls of distilled water and allowed to stand for twenty minutes. Double dilution of the solution was inoculated into Nutrient agar, MacConkey agar, Mannitol Salt agar and Salmonella and Shigella agar for viable counts. Further identification of the bacteria was carried out using standard morphological and biochemical tests. The data from this study were subjected to statistical analysis using percentage, charts and anova. The result from the analysis showed that, 82 (68.33%) out of the 120 samples evaluated were contaminated. The study showed that dirty naira notes are potential routes for bacteriological disease transmission to man during handling and constitutes a public health risk. Therefore, the appropriate authorities should embark on public enlightenment campaign targeted at the handlers and associated risks.

Author(s):  
Rikhi Ram Marasini ◽  
Pratikshya Shrestha ◽  
Prabhat Dhakal ◽  
Sukra Raj Shrestha ◽  
Sirjana Adhikari ◽  
...  

The main objective of this study was to determine the prevalence of Methicillin Resistant Staphylococcus aureus (MRSA) in paper currency. The paper currencies in circulation in Pokhara Metropolitan City were inspected. Bills of various denominations (Rs 5, 10, 20, 50, 100, 500 and 1000) were collected from five different locations; namely Food and Vegetable Shop, Bus conductor, Hospital Pharmacy, Butcher Shop and Grocery Shop. Collected sample were cultured and incubated for 24 hours at 37 oC in Brain Heart Infusion (BHI) Broth. The inoculums were further cultured on Mannitol Salt Agar (MSA) and Blood Agar (BA) media to obtain colonies, which were examined and evaluated for various parameters like gram staining and biochemical tests for identification. Then, antibiotic susceptibility test of the isolates was performed using standard procedures. A total of 35 sample of paper currency were processed, all of which showed positive growth. Out of 86 total isolates, 21 (24.42%) were Staphylococcus aureus followed by Coagulase Negative Staphylococci 19 (22.09%), Diptheroids 14 (16.3%), Bacillus spp 13 (15.11%), Micrococci 9 (10.46%), Streptococcus pneumonia 4 (4.65%), Viridans Streptococcus 4 (4.65%) and Streptococcus pyogenes 2 (2.32%). The total prevalence of MRSA in this study was 7 (33.33%). Paper currency contaminated with MRSA poses a high threat to those handling the bills as well as the community. Thus, this study suggests proper hygiene measures to be adopted after handling of paper currency to minimize the risk of contamination and emergence of diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Denis Dekugmen Yar

Transmission of pathogens through currency notes has become very relevant in today’s world due to COVID-19 pandemic. This study profiled microbial flora and their antibiotic activities from Ghana paper currency (GH¢) notes in circulation in Mampong Municipal of Ashanti Region, Ghana. The study employed a cross-sectional design to assess bacterial contaminants and their antibiotic activities from January to May 2019. A total of 70 GH¢ notes consisting of 15 each of GH¢1, GH¢2, and GH¢5; 10 each of GH¢10 and GH¢20; and 5 of GH¢50 were randomly sampled from persons at different shops, canteens, and commercial drivers. The surfaces of each GH¢ note were gently swabbed, and tenfold serial dilutions made were inoculated on plate count agar (PCA), MacConkey agar, mannitol salt agar, and deoxycholate citrate agar. The study used appropriate laboratory and biochemical tests for bacterial identification. SPSS-IBM version 16.0 was used to analyze the data. Of the 70 GH¢ notes studied, 97.1% were contaminated with one or more bacterial isolates. Mean counts on PCA ranged between 3.2 cfu/ml × 105 and 4.7 cfu/ml × 105 on GH¢ notes. Of 124 bacteria isolated, 34 (27.4%), 30 (24.2%), 22 (17.7%), 17 (13.7%), 13 (10.5%), and 8 (6.5%) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20, and GH¢50, respectively (p<0.05). Bacterial isolates were Escherichia coli (28.23%), Staphylococcus aureus (16.94%), coagulase-negative Staphylococcus (16.13%), Klebsiella species (11.29%), Salmonella species (9.68%), Shigella species (8.87%), Pseudomonas aeruginosa (5.65%), and Proteus species (3.23%). GH¢ notes had 25.81%, 20.16%, 19.35%, 17.74%, and 16.94% from meat shops, commercial drivers, canteens, grocery shops, and vegetable shops, respectively. All bacteria were 100% resistant to erythromycin, 87.5% to tetracycline, chloramphenicol, and cotrimoxazole, 75% to vancomycin, while 87.50% sensitive to amikacin. The GH¢ notes were heavily colonized with potential pathogens, which are resistant to most commonly used antibiotics and could pose a health threat to users during commercial transactions.


2020 ◽  
Author(s):  
Denis Dekugmen Yar

Abstract Transmission of pathogens through currency notes has become very relevant in today’s world due to Covid-19 pandemic. This study profiled microbial flora and their antibiotics activities from Ghana paper currency (GH¢) notes in circulation in Mampong Municipal of Ashanti Region, Ghana. The study employed a cross-sectional design to assess bacterial contaminants and their antibiotics activities from January to May 2019. A total of 70 GH¢ notes consisting of 15 each of GH₵1, GH₵2, and GH₵5; 10 each of GH₵10 and GH₵20 and 5 of GH₵50 were randomly sampled from persons at different shops, canteens and commercial drivers. The surfaces of each GH¢ note were gently swabbed and a ten-fold serial dilutions made inoculated on Plate Count Agar (PCA), MacConkey Agar, Mannitol Salt Agar and Desoxycholate Citrate Agar. The study used appropriate laboratory and biochemical tests for bacteria identification. SPSS-IBM version 16.0 was used to analyze the data. Of the 70 GH¢ notes studied, 97.1% were contaminated with one or more bacterial isolates. Mean counts on PCA ranged between 3.2 cfu/ml x 105 and 4.7 cfu/ml x 105 on GH¢ notes. Of 124 bacteria isolated; 34(27.4%), 30(24.2%), 22(17.7%), 17(13.7%), and 8(6.5%) were from GH¢1, GH¢2, GH¢10, GH¢5, GH¢20 and GH¢50 respectively [p<0.05]. Bacterial isolates were; Escherichia coli (28.23%), Staphylococcus auerus (16.94%), Coagulase-negative Staphylococcus (16.13%), Klebsiella species (11.29%), Salmonella species (9.68%), Shigella species (8.87%), Pseudomonas aeruginosa (5.65%), and Proteus species (3.23%). GH¢ notes had 25.81%, 20.16%, 19.35%, 17.74% and 16.94% from meat shops, commercial drivers, canteens, grocery shops, and vegetable shops in that order. All bacteria were 100% resistant to erythromycin, 87.5% to tetracycline, chloramphenicol, and cotrimoxazole; 75% to vancomycin while 87.50% sensitive to amikacin. The GH¢ notes were heavily colonized with potential pathogens which are resistant to most commonly used antibiotics and could pose health threat to users during commercial transactions.


Author(s):  
Markus Frischhut

This chapter discusses the most important features of EU law on infectious diseases. Communicable diseases not only cross borders, they also often require measures that cross different areas of policy because of different vectors for disease transmission. The relevant EU law cannot be attributed to one sectoral policy only, and thus various EU agencies participate in protecting public health. The key agency is the European Centre for Disease Prevention and Control. Other important agencies include the European Environment Agency; European Food Safety Authority; and the Consumers, Health, Agriculture and Food Executive Agency. However, while integration at the EU level has facilitated protection of the public's health, it also has created potential conflicts among the different objectives of the European Union. The internal market promotes the free movement of products, but public health measures can require restrictions of trade. Other conflicts can arise if protective public health measures conflict with individual human rights. The chapter then considers risk assessment and the different tools of risk management used in dealing with the challenges of infectious diseases. It also turns to the external and ethical perspective and the role the European Union takes in global health.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Asmita Shrestha ◽  
Rebanta Kumar Bhattarai ◽  
Himal Luitel ◽  
Surendra Karki ◽  
Hom Bahadur Basnet

Abstract Background The threat of methicillin-resistant Staphylococcus aureus (MRSA) exists globally and has been listed as a priority pathogen by the World Health Organization. One of the sources of MRSA emergence is livestock and its products, often raised in poor husbandry conditions. There are limited studies in Nepal to understand the prevalence of MRSA in dairy animals and its antimicrobial resistance (AMR) profile. A cross-sectional study was conducted in Chitwan, one of the major milk-producing districts of Nepal, from February 2018 to September 2019 to estimate the prevalence of MRSA in milk samples and its AMR profile. The collected milk samples (n = 460) were screened using the California Mastitis Test (CMT) and positive samples were subjected to microbiological analysis to isolate and identify S. aureus. Polymerase Chain Reaction (PCR) was used to identify the presence of the mecA gene and screen for MRSA. Results In total, 41.5% (191/460) of milk samples were positive in the CMT test. Out of 191 CMT positive milk samples, the biochemical tests showed that the prevalence of S. aureus was 15.2% (29/191). Among the 29 S. aureus isolates, 6.9% (2/29) were identified as MRSA based on the detection of a mecA gene. This indicates that that 1.05% (2/191) of mastitis milk samples had MRSA. The antibiotic sensitivity test showed that 75.9% (22/29) and 48.3% (14/29) S. aureus isolates were found to be sensitive to Cefazolin and Tetracycline respectively (48.3%), whereas 100% of the isolates were resistant to Ampicillin. In total 96.6% (28/29) of S. aureus isolates were multidrug-resistant (MDR). Conclusions This study revealed a high prevalence of S. aureus-mediated subclinical mastitis in dairy herds in Chitwan, Nepal, with a small proportion of it being MRSA carrying a mecA gene. This S. aureus, CoNS, and MRSA contaminated milk poses a public health risk due to the presence of a phenotype that is resistant to very commonly used antibiotics. It is suggested that dairy herds be screened for subclinical mastitis and treatments for the animals be based on antibiotic susceptibility tests to reduce the prevalence of AMR. Furthermore, future studies should focus on the Staphylococcus spp. to explore the antibiotic resistance genes in addition to the mecA gene to ensure public health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Epidemiologia ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 207-226
Author(s):  
Anthony Morciglio ◽  
Bin Zhang ◽  
Gerardo Chowell ◽  
James M. Hyman ◽  
Yi Jiang

The COVID-19 pandemic has placed an unprecedented burden on public health and strained the worldwide economy. The rapid spread of COVID-19 has been predominantly driven by aerosol transmission, and scientific research supports the use of face masks to reduce transmission. However, a systematic and quantitative understanding of how face masks reduce disease transmission is still lacking. We used epidemic data from the Diamond Princess cruise ship to calibrate a transmission model in a high-risk setting and derive the reproductive number for the model. We explain how the terms in the reproductive number reflect the contributions of the different infectious states to the spread of the infection. We used that model to compare the infection spread within a homogeneously mixed population for different types of masks, the timing of mask policy, and compliance of wearing masks. Our results suggest substantial reductions in epidemic size and mortality rate provided by at least 75% of people wearing masks (robust for different mask types). We also evaluated the timing of the mask implementation. We illustrate how ample compliance with moderate-quality masks at the start of an epidemic attained similar mortality reductions to less compliance and the use of high-quality masks after the epidemic took off. We observed that a critical mass of 84% of the population wearing masks can completely stop the spread of the disease. These results highlight the significance of a large fraction of the population needing to wear face masks to effectively reduce the spread of the epidemic. The simulations show that early implementation of mask policy using moderate-quality masks is more effective than a later implementation with high-quality masks. These findings may inform public health mask-use policies for an infectious respiratory disease outbreak (such as one of COVID-19) in high-risk settings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dinah Seligsohn ◽  
Chiara Crestani ◽  
Taya L. Forde ◽  
Erika Chenais ◽  
Ruth N. Zadoks

Abstract Background Streptococcus agalactiae (Group B Streptococcus, (GBS)) is the leading cause of mastitis (inflammation of the mammary gland) among dairy camels in Sub-Saharan Africa, with negative implications for milk production and quality and animal welfare. Camel milk is often consumed raw and presence of GBS in milk may pose a public health threat. Little is known about the population structure or virulence factors of camel GBS. We investigated the molecular epidemiology of camel GBS and its implications for mastitis control and public health. Results Using whole genome sequencing, we analysed 65 camel milk GBS isolates from 19 herds in Isiolo, Kenya. Six sequence types (STs) were identified, mostly belonging to previously described camel-specific STs. One isolate belonged to ST1, a predominantly human-associated lineage, possibly as a result of interspecies transmission. Most (54/65) isolates belonged to ST616, indicative of contagious transmission. Phylogenetic analysis of GBS core genomes showed similar levels of heterogeneity within- and between herds, suggesting ongoing between-herd transmission. The lactose operon, a marker of GBS adaptation to the mammary niche, was found in 75 % of the isolates, and tetracycline resistance gene tet(M) in all but two isolates. Only the ST1 isolate harboured virulence genes scpB and lmb, which are associated with human host adaptation. Conclusions GBS in milk from Kenyan camel herds largely belongs to ST616 and shows signatures of adaptation to the udder. The finding of similar levels of within- and between herd heterogeneity of GBS in camel herds, as well as potential human-camel transmission highlights the need for improved internal as well as external biosecurity to curb disease transmission and increase milk production.


Author(s):  
Gregory Gutin ◽  
Tomohiro Hirano ◽  
Sung-Ha Hwang ◽  
Philip R. Neary ◽  
Alexis Akira Toda

AbstractHow does social distancing affect the reach of an epidemic in social networks? We present Monte Carlo simulation results of a susceptible–infected–removed with social distancing model. The key feature of the model is that individuals are limited in the number of acquaintances that they can interact with, thereby constraining disease transmission to an infectious subnetwork of the original social network. While increased social distancing typically reduces the spread of an infectious disease, the magnitude varies greatly depending on the topology of the network, indicating the need for policies that are network dependent. Our results also reveal the importance of coordinating policies at the ‘global’ level. In particular, the public health benefits from social distancing to a group (e.g. a country) may be completely undone if that group maintains connections with outside groups that are not following suit.


2021 ◽  
Vol 14 (2) ◽  
pp. 78-90
Author(s):  
Ahmed Jarad ◽  
Kh. Al- Jeboori

The present study focus on non-O157 Shiga toxin-producing E. Coli (STEC), included a bacteriological study was subjected to provide additional information for non-O157 STEC prevalence in children and calves. Isolation by using selective culturing media (CHROMagar STEC and CHROMagar O157) from 127 children suffering from diarrhea and 133 calves in Al- Muthanna province. Characterization depends on culturing positive colony on MacConkey agar and Levin’s Eosin Methylene blue agar, staining single colony from the growth by gram stain, biochemical tests; Indole, the Methyl Red, Voges-Proskauer, Citrate test, Oxidase, Catalase, Urease, Motility, Kligler Iron and Api-20E, were done to confirm a diagnosis of non-O157 STEC, The reliable isolation as non-O157 STEC serotyping by specific latex agglutination test for the target non-O157 STEC (big six) serogroup (O26, O45, O103, O111, O121 and O145). The current study showed the prevalence of non-O157 STEC was 20 of out 127 (15.73%) in samples collected from children and 27 / 133 (20.30%) in calves samples in conclusion the Non-O157 STEC is an important cause of diarrhea in children, and calves; finally, the calves play an important reservoir for Non-O157 STEC.


Sign in / Sign up

Export Citation Format

Share Document