scholarly journals Lomax-Gumbel {Fréchet}: A New Distribution

Author(s):  
M. R. Mahmoud ◽  
R. M. Mandouh ◽  
R. E. Abdelatty

In this paper the T-R{Y} framework is used for proposing a new distribution that called The Lomax-Gumbel{Frechet} distribution. We study in details the properties of this distribution including hazard function, quantile Function, the skewness, the kurtosis, transformation, Renyi entropy, and moment generating function. Estimate of the parameters will be obtained using the MLE method. We present a simulation study and t the distribution to two real data sets.

2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


Author(s):  
Hamdy Salem ◽  
Abd-Elwahab Hagag

In this paper, a composite distribution of Kumaraswamy and Lindley distributions namely, Kumaraswamy-Lindley Kum-L distribution is introduced and studied. The Kum-L distribution generalizes sub-models for some widely known distributions. Some mathematical properties of the Kum-L such as hazard function, quantile function, moments, moment generating function and order statistics are obtained. Estimation of parameters for the Kum-L using maximum likelihood estimation and least square estimation techniques are provided. To illustrate the usefulness of the proposed distribution, simulation study and real data example are used.


Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Author(s):  
Nuri Celik

The arcsine distribution is very important tool in statistics literature especially in Brownian motion studies. However, modelling real data sets, even when the potential underlying distribution is pre-defined, is very complicated and difficult in statistical modelling. For this reason, we desire some flexibility on the underlying distribution. In this study, we propose a new distribution obtained by arcsine distribution with Azzalini’s skewness procedure. The main characteristics of the proposed distribution are determined both with theoretically and simulation study.


Author(s):  
Adebisi Ade Ogunde ◽  
Gbenga Adelekan Olalude ◽  
Donatus Osaretin Omosigho

In this paper we introduced Gompertz Gumbel II (GG II) distribution which generalizes the Gumbel II distribution. The new distribution is a flexible exponential type distribution which can be used in modeling real life data with varying degree of asymmetry. Unlike the Gumbel II distribution which exhibits a monotone decreasing failure rate, the new distribution is useful for modeling unimodal (Bathtub-shaped) failure rates which sometimes characterised the real life data. Structural properties of the new distribution namely, density function, hazard function, moments, quantile function, moment generating function, orders statistics, Stochastic Ordering, Renyi entropy were obtained. For the main formulas related to our model, we present numerical studies that illustrate the practicality of computational implementation using statistical software. We also present a Monte Carlo simulation study to evaluate the performance of the maximum likelihood estimators for the GGTT model. Three life data sets were used for applications in order to illustrate the flexibility of the new model.


2021 ◽  
Vol 3 (2) ◽  
pp. 81-94
Author(s):  
Sule Ibrahim ◽  
Sani Ibrahim Doguwa ◽  
Audu Isah ◽  
Haruna, M. Jibril

Many Statisticians have developed and proposed new distributions by extending the existing distributions. The distributions are extended by adding one or more parameters to the baseline distributions to make it more flexible in fitting different kinds of data. In this study, a new four-parameter lifetime distribution called the Topp Leone Kumaraswamy Lomax distribution was introduced by using a family of distributions which has been proposed in the literature. Some mathematical properties of the distribution such as the moments, moment generating function, quantile function, survival, hazard, reversed hazard and odds functions were presented. The estimation of the parameters by maximum likelihood method was discussed. Three real life data sets representing the failure times of the air conditioning system of an air plane, the remission times (in months) of a random sample of one hundred and twenty-eight (128) bladder cancer patients and Alumina (Al2O3) data were used to show the fit and flexibility of the new distribution over some lifetime distributions in literature. The results showed that the new distribution fits better in the three datasets considered.


2021 ◽  
Vol 9 (2) ◽  
pp. 311-333
Author(s):  
Hanaa Elgohari

In this paper, we introduce a new generalization of the Exponentiated Exponential distribution. Various structural mathematical properties are derived. Numerical analysis for mean, variance, skewness and kurtosis and the dispersion index is performed. The new density can be right skewed and symmetric with "unimodal" and "bimodal" shapes. The new hazard function can be "constant", "decreasing", "increasing", "increasing-constant", "upside down-constant", "decreasing nstant". Many bivariate and multivariate type model have been also derived. We assess the performance of the maximum likelihood method graphically via the biases and mean squared errors. The usefulness and flexibility of the new distribution is illustrated by means of two real data sets.


2019 ◽  
Vol 13 (2) ◽  
pp. 54
Author(s):  
Hamdy M. Salem

In this paper, a new distribution namely, The Marshall–OlkinGeneralized Inverse Weibull Distribution is illustrated and studied. The new distribution is very flexible and contains sub-models such asinverse exponential, inverse Rayleigh, Weibull, inverse Weibull, Marshall–Olkininverse Weibull and Fréchetdistributions. Also, the hazard function of the new distribution can produce variety of forms:an increase, a decrease and an upside-down bathtub. Some properties such as hazard function, quintile function, entropy, moment generating function and order statistics are obtained. Different estimation approaches namely, maximum likelihood estimators, interval estimators, least square estimators, fisher information matrix and asymptotic confidence intervals are described. To illustrate the superior performance of the proposed distribution, a simulation study and a real data analysis are investigated against other models.


Sign in / Sign up

Export Citation Format

Share Document