scholarly journals Preparation and Characterization of Nano Structured Lipid Carriers for Ocular Bacterial Infection

Author(s):  
Shubhangi Aher ◽  
Ravindra Pal Singh ◽  
Manish Kumar

The problem of bacterial conjunctivitis has dramatically increased in recent years due increased pollution and modern lifestyle. The present study was focused to fabricate Sparfloxacin loaded nanostructured lipid carriers (Spar-NLCs) for ophthalmic application to improve ocular penetration of drug and give sustained release of drug to reduce dosing frequency and toxic effect of drug associated with ocular membrane. A regular two-level factorial design was used to optimize the formulation parameters that are significantly affecting the formulation attributes. Spar-NLCs with particle size 171.1 ± 11 nm, zeta potential -49 ± 6.47 mV, entrapment efficiency 89.5 ± 5% and spherical in shape was obtained. Besides this, FTIR spectroscopy, differential scanning calorimetry, and transmission electron microscopy results suggest that the drug is successfully incorporated in NLC and has excellent compatibility with the excipients. In vitro release study follows Korsmeyer peppas model and suggests that 81.35 ± 6.2% release of drug from Spar-NLCs in 12 hours. The result of ex-vivo permeation study demonstrated 349.75 ± 7.3 µg/cm2 of permeation of drug, 44.482 µg cm-2 hr -1 of flux, and 0.1482 cm hr-1 of permeability coefficient which is 1.7 folds higher than pure drug suspension. The antimicrobial activity of Spar-NLCs was better than the pure drug suspension and equivalent to the marketed formulation. Spar-NLC formulation did not showed any ocular damage, swelling, and redness in in -vivo Draize test. The ocular tolerance test (HET-CAM test) also suggests that the Spar-NLC formulation and its excipients were nonirritant to the ocular tissues. The formulation was found to be stable over the three month of stability study. Therefore, this work strongly suggest that Spar-NLCs has higher penetration and extended release of drug which can be effectively used in prevention of bacterial conjunctivitis.

2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2094835
Author(s):  
Chengxia Liu ◽  
Ting-ting Jiang ◽  
Zhi-xiang Yuan ◽  
Yu Lu

Triptolide (TP), a broad-spectrum antitumor drug, has very poor solubility and oral bioavailability, which limits its clinical use. Compared with conventional formulations of TP, a casein (Cas)-based drug delivery system has been reported to have significant advantages for the improvement of solubility and bioavailability of insoluble drugs. In this paper, we report the successful preparation of TP-loaded Cas nanoparticles (TP-Cas) using the self-assembly characteristics of Cas in water and the optimization of the formulation by evaluation of entrapment efficiency (EE) and loading efficiency (LE). Dynamic light scattering, transmission electron microscopy, Fourier-transform infrared spectrometry, X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) was adopted to characterize the TP-Cas. Results showed that the obtained TP-Cas were approximately spherical with a particle size of 128.7 ± 11.5 nm, EE of 72.7 ± 4.7 %, and LE of 8.0% ± 0.5%. Furthermore, in vitro release behavior of TP-Cas in PBS (pH = 7.4) was also evaluated, showing a sustained-release profile. Additionally, an in vivo study in rats displayed that the mean plasma concentration of TP after oral administration of TP-Cas was significantly higher than that treated with TP oral suspension. The C max value for TP-Cas (8.0 ± 4.4 μg/mL) was significantly increased compared with the free TP (0.9 ± 0.3 μg/mL). Accordingly, the area under the curve (AUC0-8) of TP-Cas was 2.8 ± 0.8 mg/L·h, 4.3-fold higher than that of TP suspension (0.6 ± 0.1 mg/L·h). Therefore, it can be concluded that TP-Cas enhanced the absorption and improved oral bioavailability of TP. Taking the good oral safety of Cas into consideration, TP-Cas should be a more promising preparation of TP for clinical application.


2018 ◽  
Vol 10 (2) ◽  
pp. 52 ◽  
Author(s):  
Akshay Singha Roy ◽  
Sudipta Das ◽  
Arnab Samanta

Objective: The objective of the present study was to formulate and evaluate liposomes loaded with isoniazid.Methods: Liposome of isoniazid was made by thin layer film hydration method. L-α-phosphatidylcholine and cholesterol were used to make multiamellar vesicles. Six batches of liposomes were prepared based on the different weight ratio of L-α-phosphatidylcholine and cholesterol. Differential scanning calorimetry (DSC) study conducted to study in any incompatibility.Results: The prepared liposomes were evaluated by particle size analysis, entrapment efficiency, release study and stability study. Particle sizes were determined from the scanning electron microscopy (SEM) photographs. When particle frequencies were plotted against particle diameter in the histogram, it showed that F1 batch had a skewed distribution towards smaller liposomes while F6 shows a proper bell-shaped curve with a mean at 225 mm. The percentage entrapment efficiency was found to be 8.99 ± 0.15 to 4.19 ± 0.12 % respectively. From the release profile, it was seen that F1 batch was fastest and F6 was slowest to release the drug. The satisfactory batch F1 was packed in Eppendorf tube and stored at 4 °C temperature for one month. At the end of one month, the samples were analyzed for their physical properties, drug entrapment and in vitro release profile. The percentage release was found to be 96.5 ± 3.2 after 4 h.Conclusion: The F1 batch showed most promising results compared to other. No significant change was found during one month’s stability study of final batch (F1).


2020 ◽  
Vol 13 ◽  
Author(s):  
Harpal Kaur ◽  
Neeraj Mishra ◽  
Bharat Khurana ◽  
Sukhbir Kaur ◽  
Daisy Arora

Background: The existing parenteral treatment of cervical cancer has high toxicity and poor distribution of drugs at the targeted site. Purpose: To formulate localized mucoadhesive cisplatin loaded microparticles based formulation to treat cervical cancer so that enhanced therapeutics benefits with low toxicity could be achieved. Methods: Cisplatin loaded chitosan coated spray-dried microparticles were prepared by ionotropic gelation technique and optimized by Central Composite Design. The spray-dried uncoated and chitosan-coated microparticles were characterized for various parameters (Particle size, Morphology, Drug entrapment efficiency). In vitro drug release study was carried out in simulated vaginal fluids by dialysis membrane method. Ex vivo studies were carried out to evaluate the cytotoxic potential of the developed formulation by MTT assay. A drug permeability study was done by Franz diffusion cell using the vaginal tissue of Swiss Albino Mice. Results: All in vitro characterization parameters were found to be optimum. The In vitro release studies indicated a controlled release following the Higuchi model. The chitosan-coated microparticles were found to be more cytotoxic than uncoated microparticles and plain cisplatin solution. The chitosan-coated microparticles were found to be more permeable than uncoated microparticles. Finally, in vivo tumor regression and histopathological studies confirmed the significant decrease in tumor volume at different time intervals. Conclusion: Thus it can be concluded that mucoadhesive spray-dried microparticles could provide a favorable approach for localized delivery of the anticancer drug via vaginal route against cervical cancer with its enhanced effectiveness.


Author(s):  
Nallaguntla Lavanya ◽  
Indira Muzib ◽  
Aukunuru Jithan ◽  
Balekari Umamahesh

Objective: The objective of the present study was to prepare and evaluate a novel oral formulation of nanoparticles for the systemic delivery of low molecular weight heparin (LMWH). Methods: Nanoparticles were prepared by polyelectrolyte complexation (PEC) method using polymers sodium alginate and chitosan. Entrapment efficiency of LMWH in nanoparticles was found to be  ̴88%. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X‑ray diffraction (XRD), Scanning electron microscopy (SEM)  studies carried for nanoparticles. In vitro release studies were performed for the formulations. Ex vivo permeation studies were performed optimized formulation by using small intestine of rat and in vivo studies were conducted on rat model.Results: In vitro release studies demonstrated that the release of LMWH was negligible in the stomach and high in the small intestine. FTIR has indicated that there is no interaction between the ingredients in nanoparticle. DSC and XRD studies confirmed that the amino groups of chitosan interacted with the carboxylic groups of alginate. Invitro % drug release of 95% was shown by formulation AC5. Ex vivo permeation studies have elucidated that ̴ 73% of LMWH was transported across the epithelium. Nanoparticles have shown enhanced oral bioavailability of LMWH as revealed by 4.5 fold increase in AUC of plasma drug concentration time curve.Conclusion: The results suggest that the nanoparticles prepared can result in targeted delivery of LMWH into systemic circulation via intestinal and colon routes. Novel nanoparticles thus prepared in this study can be considered as a promising delivery system.Keywords: Antifactor Xa activity, Chitosan, Differential scanning calorimetry, Sodium alginate, Low-molecular-weight heparin, Oral bioavailability.


Author(s):  
Kishan V ◽  
Usha Kiranmai Gondrala ◽  
Narendar Dudhipala

Felodipine is an antihypertensive drug with poor oral bioavailability due to the first pass metabolism. For improving the oral bioavailability, felodipine loaded solid lipid nanoparticles (SLNs) were developed using trimyristin, tripalmitin and glyceryl monostearate. Poloxamer 188 was used as surfactant. Lipid excipient compatibilities were confirmed by differential scanning calorimetry. SLN dispersions were prepared by hot homogenization of molten lipids and aqueous phase followed by ultrasonication at a temperature, above the melting point. SLNs were characterized for particle size, zeta potential, drug content, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in 0.1N HCl and phosphate buffer of pH 6.8 using dialysis method. Pharmacokinetics of felodipine-SLNs after oral admini-stration in male Wistar rats was studied. The bioavailability of felodipine was increased by 1.75 fold when compared to that of a felodipine suspension.  


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document