scholarly journals Stability-indicating RP-UPLC Method for Determination of Vildagliptin in Drug Substance and Its Tablet Dosage Form

Author(s):  
Kalyani Peluri ◽  
S. Rajasekaran

Aim: The foremost purpose of this research work is to diminish the analysis time and to establish cost effective method for estimation of Vildagliptin by RP-UPLC. Study Design: UPLC based Quantification studies. Place and Duration of Study: Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan, Indiabetween June 2020 and August 2020. Methodology: A simple, responsive and precised RP-UPLC method with good robustness was developed and validated as per ICH for the analysis of Vildagliptin in drug substance and separation of degradants generated by different forced degradation conditions. Productive separation of Vildagliptin was attained by the use of Luna C18 column (100x2.6mm and 1.6µm) with a mobile phase composition of 0.1% v/v Trifluoroacetic acid and Acetonitrile in 80:20 v/v, which was pumped with 0.5 ml/min flow rate. The eluted substances were examined with PDA detector at 239nm. Stressed degradation studies were performed with proposed method to determine the percentage degradation of Vildagliptin. Results: The RT of Vildagliptin was observed at 1.56 min. The developed method was validated as per ICHQ2B and proved that the method was precise, sensitive, specific and accurate.The lowest concentration of limit of detection (0.05µg/ml) and limit of quantification(0.5µg/ml) of Vildagliptin make obvious about the sensitivity of the method. The correlation coefficient found to be 0.9997 for given range of linear concentrations. The calculated average percentage recoveries of Vildagliptin in spiked solutions were found to be in the range of 99.1-100.5. The calculated % RSD was determined to be less than 2. Determination of degradation of amount of Vildagliptin by forced degradation studies representing the stability indicating nature of the proposed method. Conclusion: The developed method said to be highly sensitive, accurate, specific and robust, therefore this method has high probability to adopt in pharmaceutical industry for regular analysis of Vildagliptin.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kanakapura B. Vinay ◽  
Hosakere D. Revanasiddappa ◽  
Cijo M. Xavier ◽  
Pavagada J. Ramesh ◽  
Madihalli S. Raghu

The use of Ultra Performance Liquid Chromatography (UPLC), with a rapid 5-minute reversed phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for tramadol hydrochloride (TMH) is demonstrated. A simple, precise and accurate stability-indicating isocratic UPLC method was developed for the determination of TMH in bulk drug and in its tablets. The method was developed using Waters Aquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogen phosphate buffer of pH 2.8 and an equal volume of acetonitrile (60 : 40 v/v). The eluted compound was detected at 226 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–300 μg mL−1 TMH with regression coefficient (r) value of 0.9999. The limit of detection (S/N =3) was 0.08 μg mL−1 and the limit of quantification (S/N =10) was 0.2 μg mL−1. Forced degradation of the bulk sample was conducted an accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal and photolytic degradation were used to assess the stability indicating power of the method. TMH was found to degrade significantly in acidic, basic and oxidative stress conditions and stable in thermal, hydrolytic and photolytic conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Najmul Hasan ◽  
Mathurot Chaiharn ◽  
Sauleha Khan ◽  
Hira Khalid ◽  
Nawab Sher ◽  
...  

A reverse phase stability indicating HPLC method for simultaneous determination of two antispasmodic drugs in pharmaceutical parenteral dosage forms (injectable) and in serum has been developed and validated. Mobile phase ingredients consist of Acetonitrile : buffer : sulfuric acid 0.1 M (50 : 50 : 0.3 v/v/v), at flow rate 1.0 mL/min using a HibarμBondapak ODS C18column monitored at dual wavelength of 266 nm and 205 nm for phloroglucinol and trimethylphloroglucinol, respectively. The drugs were subjected to stress conditions of hydrolysis (oxidation, base, acid, and thermal degradation). Oxidation degraded the molecule drastically while there was not so much significant effect of other stress conditions. The calibration curve was linear with a correlation coefficient of 0.9999 and 0.9992 for PG and TMP, respectively. The drug recoveries fall in the range of 98.56% and 101.24% with 10 pg/mL and 33 pg/mL limit of detection and limit of quantification for both phloroglucinol and trimethylphloroglucinol. The method was validated in accordance with ICH guidelines and was applied successfully to quantify the amount of trimethylphloroglucinol and phloroglucinol in bulk, injectable form and physiological fluid. Forced degradation studies proved the stability indicating abilities of the method.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Madihalli S. Raghu ◽  
Kanakapura Basavaiah ◽  
Cijo M. Xavier ◽  
Kudige N. Prashanth

A simple, precise, and accurate, and stability-indicating isocratic Ultraperformance Liquid Chromatography (UPLC) method was developed for the determination of methdilazine hydrochloride (MDH) in bulk drug and in its tablets. The use of UPLC, with a rapid 5-minute-reversed-phase isocratic separation on a 1.7 μm reversed-phase packing material to provide rapid ‘‘high throughput’’ support for MDH, is demonstrated. The method was developed using Waters Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with mobile phase consisting of a mixture of potassium dihydrogenorthophosphate and 1-pentane sulphonic acid buffer of pH 4.0 and acetonitrile (60 : 40 v/v). The eluted compound was detected at 254 nm with a UV detector. The standard curve of mean peak area versus concentration showed an excellent linearity over a concentration range 0.5–80 μg mL−1 MDH with regression coefficient () value of 0.9999. The limit of detection () was 0.2 μg mL−1 and the limit of quantification () was 0.5 μg mL−1. Forced degradation of the bulk sample was conducted in accordance with the ICH guidelines. Acidic, basic, hydrolytic, oxidative, thermal, and photolytic degradations were used to assess the stability indicating power of the method. The drug was found to be stable in acidic, basic, thermal, hydrolytic, and photolytic stress conditions and showed slight degradation in oxidative stress condition.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (05) ◽  
pp. 56-64
Author(s):  
Rani A Prameela ◽  
S. Madhavi ◽  
Rao B. Tirumaleswara ◽  
Sudheer Reddy CH.

A novel Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for the simultaneous determination of antidiabetic drugs metformin hydrochloride and nateglinide. The method was developed using a Waters ACQUITY UPLC SB C18 (100 × 2.1 mm, 1.8 μm) column. The mobile phase consisting of 0.01 % potassium dihydrogen phosphate buffer (pH 5.8): acetonitrile (50: 50 V/V) was used throughout the analysis. The flow rate was 0.3 mL/min, the injection volume was 1.0 μL, column temperature was 30 0C, run time 3 min and detection was carried at 238 nm using a TUV detector. The retention times of metformin hydrochloride and nateglinide were found to be 1.28 1.71 min, respectively. Metformin hydrochloride and nateglinide were found to be linear over the concentration range of 125-750 and 15-90 μg/mL. The limit of detection and the limit of quantification for metformin hydrochloride were found to be 0.22 and 0.68 μg/mL, respectively, and, for nateglinide, 0.02 and 0.6 μg/mL, respectively. Developed method was validated as per ICH guidelines. The specificity of the method was confirmed by forced degradation study. The suggested method is suitable for determination of metformin hydrochloride and nateglinide in bulk and pharmaceutical dosage forms.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hitesh Verma ◽  
Surajpal Verma ◽  
Harmanpreet Singh

A new simple, reliable, inexpensive, and accurate method was developed for the quantification of Frovatriptan Succinate Monohydrate in different physiological media at 244 nm in bulk and in tablet dosage forms. The developed method is an attempt to surpass the disadvantages associated with the reported methods, namely, less sensitive and tedious in usage for routine purposes. Beer’s law was followed over the range of 1.0 µg/mL to 4.5 µg/mL. Stability indicating assay method was developed and validated as per the ICH guidelines using various parameters, for example, accuracy, precision, limit of quantification, limit of detection, robustness, ruggedness, solution stability, recovery, forced degradation (hydrolysis, photo degradation, thermal degradation, and oxidation), and so forth. Percent relative standard deviation associated with all the parameters was less than 2, showing compliance with the acceptance criteria of ICH guidelines. The developed method was very sensitive as limit of quantification and limit of detection were found to be 0.025 µg/mL and 0.00625 µg/mL, respectively. Forced degradation studies of drug reveal good stability under the chosen experimental conditions.


2020 ◽  
Vol 10 (6) ◽  
pp. 49-56
Author(s):  
Sneha Jagnade ◽  
Pushpendra Soni ◽  
Lavakesh Kumar Omray

The aim of present study was to investigate the development and validation of a green analytical method for the determination of aspirin and domperidone. Method Development and Validation for Estimation of Domperidone and Aspirin in bulk or formulation by using RP-HPLC. The RP-HPLC method was developed for estimation of Aspirin and Domperidone in synthetic mixture by isocratically using 10 mM KH2PO4: Acetonitrile (20:80) as mobile phase, Prontosil C-18 column (4.6 x 250 mm, 5μparticle size) column as stationary phase and chromatogram was recorded at 231 nm. Then developed method was validated by using various parameters such as, linearity, Range accuracy, precision repeatability, intermediate precision, robustness, limit of detection, limit of quantification. The proposed methods were found to be linear with correlation coefficient close to one. Precision was determined by repeatability, Intermediate precision and reproducibility of the drugs. The robustness of developed method was checked by changing in the deliberate variation in solvent. The result obtained shows the developed methods to be Cost effective, Rapid (Short retention time), Simple, Accurate (the value of SD and % RSD less than 2), Precise and can be successfully employed in the routine analysis of these drugs in bulk drug as well as in tablet dosage form. The Simplicity, Rapidly and Reproducibility of the proposed method completely fulfill the objective of this research work. Keywords: Asprin; Domperidone; HPLC; Ultra Violet; Validation


2018 ◽  
Vol 6 (4) ◽  
pp. 21-29
Author(s):  
Madhavi K Meher ◽  
Charushila Bhangale ◽  
Ramdas Dholas ◽  
Vandana Aher Prashant ◽  
Rohan Pawar

The objective of this work is to develop a rapid, precise, accurate and sensitive revere phase liquid chromatographic method and Forced degradation studies for the estimation of Lansoprazole. The chromatographic method was standardized for Lansoprazole using Shimadzu HPLC model reverse phase analytical Inspire grace C18 column (250 mm x 4.5 mm, 5mm particle size) with PC-3000-M Reciprocating Pump (40 Mpa) and UV-3000-M Detector, at 285nm and flow rate of 0.8 ml/min. The mobile phase consists of 80:20 Methanol: water. The linearity of proposed method was investigated in the range of 10-50 µm/ml (R2 = 0.999) of Lansoprazole. The limit of detection (LOD) was found to be 0.12 mm/ml. The limit of quantification (LOQ) was found to be 0.36 mg/ml. The retention time of Lansoprazole found to be 5.4 min. The method was statistically validated and % RSD was found to be less than 2 indicating high degree of accuracy and precision. Hence proposed method can be successfully applied for the estimation of Lansoprazole in further studies. Keywords: Lansoprazole, RP-HPLC, Chromatogram, validation, estimation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Myriam Ajemni ◽  
Issa-Bella Balde ◽  
Sofiane Kabiche ◽  
Sandra Carret ◽  
Jean-Eudes Fontan ◽  
...  

A stability-indicating assay by reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of pentobarbital sodium in oral formulations: a drug used for infant sedation in computed tomography (CT) or magnetic resonance imaging (MRI) scan. The chromatographic separation was achieved on a reversed-phase C18 column, using isocratic elution and a detector set at 214 nm. The optimized mobile phase consisted of a 0.01 M potassium buffer pH 3 and methanol (40 : 60, v/v). The flow rate was 1.0 mL/min and the run time of analysis was 5 min. The linearity of the method was demonstrated in the range of 5 to 250 μg/mL pentobarbital sodium solution (r2= 0.999). The limit of detection and limit of quantification were 2.10 and 3.97 μg/mL, respectively. The intraday and interday precisions were less than 2.1%. Accuracy of the method ranged from 99.2 to 101.3%. Stability studies indicate that the drug is stable to sunlight and in aqueous solution. Accelerated pentobarbital sodium breakdown by strong alkaline, acidic, or oxidative stress produced noninterfering peaks. This method allows accurate and reliable determination of pentobarbital sodium for drug stability assay in pharmaceutical studies.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3115 ◽  
Author(s):  
Alina Pyka-Pająk ◽  
Małgorzata Dołowy ◽  
Wioletta Parys ◽  
Katarzyna Bober ◽  
Grażyna Janikowska

A new, simple, and cost-effective TLC-densitometric method has been established for the simultaneous quantitative determination of acetylsalicylic acid and ascorbic acid in combined effervescent tablets. Separation was performed on aluminum silica gel 60F254 plates using chloroform-ethanol-glacial acid at a volume ratio of 5:4:0.03 as the mobile phase. UV densitometry was performed in absorbance mode at 200 nm and 268 nm for acetylsalicylic acid and ascorbic acid, respectively. The presented method was validated as per ICH guidelines by specificity, linearity, accuracy, precision, limit of detection, limit of quantification, and robustness. Method validations indicate a good sensitivity with a low value of LOD and LOQ of both examined active substances. The linearity range was found to be 1.50–9.00 μg/spot and 1.50–13.50 μg/spot for acetylsalicylic and ascorbic acid, respectively. A coefficient of variation that was less than 3% confirms the satisfactory accuracy and precision of the proposed method. The results of the assay of combined tablet formulation equal 97.1% and 101.6% in relation to the label claim that acetylsalicylic acid and ascorbic acid fulfill pharmacopoeial requirements. The developed TLC-densitometric method can be suitable for the routine simultaneous analysis of acetylsalicylic acid and ascorbic acid in combined pharmaceutical formulations. The proposed TLC-densitometry may be an alternative method to the modern high-performance liquid chromatography in the quality control of above-mentioned substances, and it can be applied when HPLC or GC is not affordable in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document