scholarly journals A Study Based on Controlled Drug Release by 3D Printed Aloe-Vera Bi-Layer Tablet

Author(s):  
Anurag Verma ◽  
Piyush Mittal ◽  
Milind S. Pande ◽  
Neelanchal Trivedi

Aloe-Vera or Aloe barbadensis (botanical name) is a plant with many medicinal properties and have great importance in Ayurveda. Its leaves are succulent, erect, forming a thick rosette. The internal translucent pulp of Aloe-Vera is bound to a waxy crust or cuticle, and its vascular tissues transport minerals as well as water from the soil. Aloe Vera is being used as a major skin rejuvenating product, although it has varied medicinal properties also. In the present study, an attempt to make a method to create bi-layer tablets of Aloe-Vera, utilizing 3D printing techniques is presented. The method created doesnt affect the integral functional characteristics of the tablet. The method here contains creating an immediate release and sustained release tablet for making the Aloe-Vera to be used directly by the person for its numerous health effects. The tablet is designed so to be consumed by vegans as well since it is completely herbal.

Author(s):  
Tejinder Kaur ◽  
Satish Kumar Sharma

Delphinidin is a known dye and food colorant along with many medicinal properties for instance anti-inflammatory, anti-microbial, anti-diabetic, anti-obesity and anti-cancer. The present research has been designed to formulate bi-layered tablets using delphinidin which inherits these medicinal properties. The extrusion of tablets is done by using 3D printing techniques involving a table-top 3D printer which extrudes delphinidin tablets along with the required excipients. The characteristics of the whole tablets have been analyzed separately including hardness, friability, and weight. Adapted method for tablet formulation results in tablets which are appropriate for the immediate release and sustained release. The present research provides a method to make the effective tablets with reduced cost which can be used as drug formulation method in pharmaceutical industries.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1395 ◽  
Author(s):  
Mohammed S. Algahtani ◽  
Abdul Aleem Mohammed ◽  
Javed Ahmad ◽  
Ehab Saleh

The use of 3D printing techniques to control drug release has flourished in the past decade, although there is no generic solution that can be applied to the full range of drugs or solid dosage forms. The present study provides a new concept, using the 3D printing technique to print a coating system in the form of shells with various designs to control/modify drug release in immediate-release tablets. A coating system of cellulose acetate in the form of an encapsulating shell was printed through extrusion-based 3D printing technology, where an immediate-release propranolol HCl tablet was placed inside to achieve a sustained drug release profile. The current work investigated the influence of shell composition by using different excipients and also by exploring the impact of shell size on the drug release from the encapsulated tablet. Three-dimensional printed shells with different ratios of rate-controlling polymer (cellulose acetate) and pore-forming agent (D-mannitol) showed the ability to control the amount and the rate of propranolol HCl release from the encapsulated tablet model. The shell-print approach also showed that space/gap available for drug dissolution between the shell wall and the enclosed tablet significantly influenced the release of propranolol HCl. The modified release profile of propranolol HCl achieved through enclosing the tablet in a 3D printed controlled-release shell followed Korsmeyer–Peppas kinetics with non-Fickian diffusion. This approach could be utilized to tailor the release profile of a Biopharmaceutics Classification System (BCS) class I drug tablet (characterized by high solubility and high permeability) to improve patient compliance and promote personalized medicine.


2020 ◽  
Vol 10 (23) ◽  
pp. 8594
Author(s):  
Paweł Komorowski ◽  
Mateusz Surma ◽  
Michał Walczakowski ◽  
Przemysław Zagrajek ◽  
Agnieszka Siemion

Medical and many other applications require small-volume setups enabling terahertz imaging. Therefore, we aim to develop a device for the in-reflection examination of the samples. Thus, in this article, we focus on the diffractive elements for efficient redirection and focusing of the THz radiation. A terahertz diffractive optical structure has been designed, optimized, manufactured (using extrusion-based 3D printing) and tested. Two manufacturing methods have been used—direct printing of the structures from PA12, and casting of the paraffin structures out of 3D-printed molds. Also, the limitations of the off-axis focusing have been discussed. To increase the efficiency, an iterative algorithm has been proposed that optimizes off-axis structures to focus the radiation into small focal spots located far from the optical axis, at an angle of more than 30 degrees. Moreover, the application of higher-order kinoform structure design allowed the maintaining of the smallest details of the manufactured optical element, using 3D printing techniques.


2020 ◽  
Author(s):  
Laura Ruiz-Cantu ◽  
Gustavo Trindade ◽  
Vincenzo Taresco ◽  
Zuoxin Zhou ◽  
Laurence Burroughs ◽  
...  

<p>Controlling the microstructure of materials by means of phase separation is a versatile tool for optimizing material properties. In this study, we show that ink jet 3D printing of polymer blends gives rise to controllable phase separation that can be used to tailor the release of drugs. We predicted phase separation using high throughput screening combined with a model based on the Flory-Huggins interaction parameter, and were able to show that drug release from 3D printed structures can be predicted from observations based on single drops of mixtures. This new understanding gives us hierarchical compositional control, from droplet to device, allowing release to be ‘dialed up’ without any manipulation of geometry. This is an important advance for implants that need to be delivered by cannula, where the shape is highly constrained and thus the usual geometrical freedoms associated with 3D printing cannot be exploited, bringing a hitherto unseen level of understanding to emergent material properties of 3D printing.</p>


MRS Advances ◽  
2021 ◽  
Author(s):  
Nadia Rodriguez ◽  
Anil K. Bastola ◽  
Marc Behl ◽  
Patricia Soffiatti ◽  
Nick P. Rowe ◽  
...  

Abstract Inspired by the interesting functional traits of a climbing cactus, Selenicereus setaceus, found in the forest formations of Southeastern Brazil, we formulated a hypothesis that we can directly learn from the plants to develop multi-functional artificial systems by means of a multi-disciplinary approach. In this context, our approach is to take advantage of 3D-printing techniques and shape-memory hydrogels synergistically to mimic the functional traits of the cactus. This work reports on the preliminary investigation of cactus-inspired artificial systems. First, we 3D-printed soft polymeric materials and characterized them, which defines the structure and is a passive component of a multi-material system. Second, different hydrogels were synthesized and characterized, which is an active component of a multi-material system. Finally, we investigated how the hydrogel can be integrated into the 3D-printed constructs to develop artificial functional systems. Graphic abstract


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 379 ◽  
Author(s):  
Andrea Massaccesi ◽  
Gianluca Dassano ◽  
Paola Pirinoli

In this paper, the design of a beam scanning, 3D-printed dielectric Transmitarray (TA) working in Ka-band is discussed. Thanks to the use of an innovative three-layer dielectric unit-cell that exploits tapered sections to enhance the bandwidth, a 50 × 50 elements transmitarray with improved scanning capabilities and wideband behavior has been designed and experimentally validated. The measured radiation performances over a scanning coverage of ±27 ∘ shown a variation of the gain lower than 2.9 dB and a 1-dB bandwidth in any case higher than 23%. The promising results suggest that the proposed TA technology is a valid alternative to realize a passive multibeam antenna, with the additional advantage that it can be easily manufactured using 3D-printing techniques.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 144
Author(s):  
Guillermo Sotorrío Ortega ◽  
Javier Alonso Madrid ◽  
Nils O. E. Olsson ◽  
José Antonio Tenorio Ríos

The construction industry has embraced digitisation and industrialisation in response to the need to increase its productivity, optimise material consumption and improve workmanship. Additive manufacturing (AM), more widely known as 3D printing, has driven substantial progress in these respects in other industries, and a number of national and international projects have helped to introduce the technique to the construction industry. As with other innovative processes not covered by uniform standards, appropriate assessments and testing methodologies to control the quality of the 3D-printed end products, while not obligatory, are advisable. This article shows that regulation is not an obstacle to the use of an innovative product, such as 3D printing, by proposing quality-control tests and an assessment methodology, in the understanding that standardisation ensures the viability of a technology. The information, including the methods and results, is based on the authors’ experiences in the development of three research projects pertaining to 3D printing. This paper also discusses whether the performance of the materials used in 3D printing could be superior to traditional ones.


2020 ◽  
Vol 26 (8) ◽  
pp. 1345-1361 ◽  
Author(s):  
Yee Ling Yap ◽  
Swee Leong Sing ◽  
Wai Yee Yeong

Purpose Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics. Design/methodology/approach The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented. Findings This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics. Originality/value The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.


Sign in / Sign up

Export Citation Format

Share Document