scholarly journals Formulation Development and Evaluation of Doxofylline Sustained-Release Tablets by Using Chitosan and Guar Gum

Author(s):  
Pawan Avhad ◽  
Revathi Gupta

The sustained-release dosage form is a well-characterized and reproducible dosage form that is designed to control drug release profile at a certain rate to reach desired drug concentration in blood plasma or at the target site. There is immense demand in the market for new sustained-release formulations used for new drug molecules which release the drug at a sustained rate. Doxofylline is one of the widely useful drugs in the market and needs to be given in a single dose for a long duration of time. For the same, we have prepared a sustained released Doxofylline tablet. Aim: This research was done to design, formulate and evaluate Doxofylline sustained-release tablets by using different concentrations of Chitosan and Guar Gum.  Methods: The factorial design was used to prepare Doxofylline sustained-release tablet. Doxofylline sustained-release tablets were prepared to employ different concentrations of Chitosan, Guar Gum, Lactose, and Magnesium Stearate in different combinations by wet granulation technique. Total 9 formulations were designed, formulated, and evaluated for the hardness, thickness, friability, % drug content, and in-vitro drug release. Results: A study of the release of drug by in-vitro found that F8 is to be the best efficient formulation which consists of both Chitosan and Guar Gum helped in delayed the release of drug up to 24 hours and performs excellent release of drug in starting hours of drug release in the body. The drug released from the F8 formulation indicates the kinetic model of First Order, by anomalous diffusion. The formulation F8 shows optimum thickness, hardness and at 40ºC±2 99.35% drug release after 24 hours shows optimum formulation.  Conclusion: This study concludes that better drug release was observed by using natural polymers.  Doxofylline with natural polymer shows good release and better dissolution rate as compared with a single synthetic polymer. Synthetic drug with natural polymer shows more future scope and this work will help the researcher in the future.

Author(s):  
Pavani Chowdary ◽  
T Sravani ◽  
MD Basheeruddin

<p>The purpose of this research work was to formulate and evaluate the sustained release tablets of <em>Nateglinide</em> 500mg, an antidiabetic drug. <em>Nateglinide </em>is an oral hypoglycemic agent. The tablets are prepared by direct compression method. The formulations were optimized by incorporating varying composition of Xanthan gum and guar gum as polymers, lactose as flow aid and magnesium stearate as lubricant. All the excipients are tested for compatibility with drug, which revealed that there was no physical and chemical interaction occurred. The Preformulation parameters such as bulk density, tapped density, compressibility index and Hausner’s ratio were analyzed. The friability, drug content, loss on drying, bulk density and percentage yield was evaluated for tablets. The effect of these variables on drug release also studied. The In-Vitro drug release studied were Performed in the USP dissolution apparatus-II using pH 0.1N HCl as dissolution media at 75 rpm speed and temperature of 37<sup>o</sup>c ± 5<sup>o</sup>c. The sampling was done at periodic time intervals of 1,4,8,12,16,20 and 24 hours and was replaced by equal volume of dissolution media after each withdrawal. The cumulative amount of drug release at different intervals is estimated using UV method. Based on the evaluation result the formulations F-7 was selected as best formulation. The tablets were found to follow first order kinetics and Higguchi mechanism of drug release, ‘n’ value is less than 0.5 which confirms that the drug release through the matrix was fickian diffusion.  </p>


2013 ◽  
Vol 2 (10) ◽  
pp. 165-169 ◽  
Author(s):  
Manivannan Rangasamy ◽  
Venkata Krishna Reddy Palnati ◽  
Lakshmi Narayana Rao Bandaru

The present study involves in the formulation and evaluation of sustained release tablets of Voriconazole (250mg). The objective of the present study was to formulate Voriconazole sustained release tablets by wet granulation method by using natural (Xanthan gum, Karaya gum) and semi synthetic polymers (HPMC K100M). Lactose was used as diluting agent, Magnesium stearate was used as a lubricant and Talc was used as a glident. These sustained release tablets can release the drug up to 12 hours in predetermined rate. The formulated powder blend was evaluated for bulk density, tapped density, compressibility index and angle of repose. The formulated tablets were evaluated for physical characteristics of sustained release tablets such as thickness, hardness, friability, weight variation and drug content. The results of the formulations found to be within the limits specified in official books. The tablets were evaluated for In-vitro drug release studies by using USP type I dissolution test apparatus. The dissolution test was performed in 0.1 N HCL for 2 hr and phosphate buffer pH 6.8 for 10hrs. The in-vitro cumulative drug release profile of all formulations F1-F10 at 12 hours showed 84.25% to 99.82% drug release, respectively. From the data it was clear that by increasing the amount of polymer in the formulation the amount of drug release was decreased. Hence, Formulation F9 was the most promising formulation as it gives satisfactory release (99.82%) for 12 hours and F9 found to be the best formulation.DOI: http://dx.doi.org/10.3329/icpj.v2i10.16410 International Current Pharmaceutical Journal, September 2013, 2(10): 165-169


2021 ◽  
Vol 11 (5-S) ◽  
pp. 108-112
Author(s):  
, Sonam ◽  
Nilesh Jain ◽  
Jitendra Banveer

The goal of this study is to develop a long-acting Lansoprazole delivery system. Lansoprazole belongs to a class of antisecretory drugs known as substituted benzimidazoles, which decrease gastric acid secretion by inhibiting the (H+,K+)-ATPase enzyme system at the secretory membrane of the stomach parietal cell. Due to its mechanism of action, despite its short half-life of 1-5 hours, it can effectively block acid secretion for 24 hours. However, as his plasma concentration falls, the effect will diminish. Lansoprazole will be given as a sustained release tablet to avoid multiple dosing or to reduce the frequency of dose. Lansoprazole was produced and analysed utilizing natural and synthetic polymers such as Xanthan gum, Gellan gum, Carbopol 940 P, and Chitosan. Based on the findings of this experiment, it was determined that formulation F7 demonstrated sustained drug release for up to 12 hours in all developed formulations. Formulation (F1, F2, F3, F4, F5, and F6) were tested in vitro for drug release. For the improved formulation F7, the formulation and release kinetics were estimated. When the regression coefficient values of were evaluated, it was found that Peppas had the highest ‘r2' value, 0.952, indicating that drug release from formulations followed Peppas release kinetics. Key words: Lansoprazole, Sustain release tablets, Synthetic and Natural Polymers, formulation, evaluation


Author(s):  
V. Viswanath ◽  
U. Chandrasekhar ◽  
B. Narasimha Rao ◽  
K. Gnana Prakash

The objective of the present study was to develop a sustained release matrix tablets of Losartan potassium, an anti hypertensive drug. The sustained release tablets were prepared by wet granulation and formulated using different drug and polymer ratios. Hydrophilic natural polymers like xanthan Gum (XG), guar gum and cellulose were used. Compatibility of the drug with various excipients was studied. The compressed tablets were evaluated and showed compliance with Pharmacopoeial limits. Formulation was optimized (F2) on the basis of acceptable tablet properties and in vitro drug release. The resulting formulation produced matrix tablets with optimum hardness, consistent weight uniformity and friability. All tablets but one exhibited gradual and near completion sustained release for losartan potassium and 90.88% released at the end of 12h. The results of dissolution studies indicated that formulation F2 (drug to polymer 1:2) is the most successful of the study and exhibited drug release pattern very close to theoretical release profile. A decrease in release kinetics of the drug was observed on increasing polymer ratio. Applying exponential equation, all the formulation tablets (except F2) showed diffusion-dominated drug release. The mechanism of drug release from F2 was diffusion coupled with erosion.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


2021 ◽  
Vol 11 ◽  
Author(s):  
Hardik Rana ◽  
Rushikesh Chaudhari ◽  
Vaishali Thakkar ◽  
Tejal Gandhi

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form. Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective. Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets was formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner – Nelson approach. Results: Drug – Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP yield less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots were revealed the significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h. Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose had a significant effect on drug release in sustained-release minitablet. The approach can be useful in the industry.


Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


2020 ◽  
Vol 10 (4) ◽  
pp. 314-325
Author(s):  
Santanu Chakraborty ◽  
Madhusmruti Khandai ◽  
Manami Dhibar ◽  
Shikha Yadav ◽  
Honey Kumari

Objective: The present investigation was aimed to isolate, characterize and establish a natural polymer obtained from partially ripe and fresh fruits of Dillenia indica and its utility to deliver losartan potassium in a sustained manner from microspheric macromolecular dosage form. Methods: All the microspheres were prepared by ionotropic gelation technique and investigated for various physico-chemical parameters along with in-vitro drug release studies to optimize the concentration of algino-Dillenia polymeric blend required to develop twice daily sustained release dosage form of losartan potassium. Results: The functional characteristic studies and rheological behavior analysis suggested that extracted polysaccharide can be used as a viscosity modifying agent as well as sustain release ingredient. All the microsphere formulations exhibited excellent mucoadhesion properties and site-specific drug release. In-vitro studies revealed that the optimum concentration of algino-Dillenia polymeric blend is suitable to deliver losartan potassium in a sustained manner for a prolonged period of time. SEM study revealed that the microspheres were spherical in shape with a smooth outer surface having small cracks. XRD and DSC studies revealed that losartan potassium is present as an amorphous form in the prepared optimized microsphere formulation. Conclusion: Thus, the present studies demonstrated that Dillenia fruit mucilage has an interesting rheological behavior which may be used as a viscosity modifying agent and exhibit promising properties of a sustained release dosage form to deliver losartan potassium from its microspheric dosage form.


Author(s):  
Gururaj S Kulkarni ◽  
Prabhansh P Chaudhary ◽  
Shivakumar Swamy

The aim of the present study was to develop and evaluate sustained release floating tablets of Diltiazem hydro-chloride, an antihypertensive agent. The sustained release floating tablets were prepared by direct compression method and formulated using different polymer combinations, formulations such as F1 to F9. Natural polymer Sodium alginate and synthetic polymer HPMC K4M were used. Developed formulations were evaluated for the pre compression parameters i.e., drug- excipients compatibility by FTIR, bulk density, compressibility, and angle of repose etc. Post compression parameters i.e. weight variation; full factorial design was applied to optimize the developed formulation. SA and HPMC K4M were selected as independent variable at three different concentrations. The in-vitro drug release study revealed that formulation F8 combination of both synthetic (HPMC) and natural polymers (sodium alginate) was the most successful formulation of the study, all tablets but one exhibited gradual and near complete sustained release for diltiazem HCl (90-100%) that extended the drug release up to 8 hours, with satisfactory drug release in the initial hours, and the total release pattern was close to the theoretical release profile.  Model equations of zero and first order, Higuchi, Hixson-Crowell and Peppas, intended to elucidate the drug release mechanism, and were fitted to the release data. Mathematical modelling of in-vitro dissolution data indicated the best-fit release kinetics was achieved with Higuchi model with r2 vales of 0.994 in its semi log plot. The ‘n’ value in Higuchi model was >0.89 which indicated, Super Case-II transport of drug from polymer sustained, i.e., diffusion with relaxation of polymeric chain. In conclusion, the results indicated that the prepared sustained-release tablets of Diltiazem hydrochloride could perform therapeutically better than conventional tablets with improved efficacy and better patient compliance.     


Sign in / Sign up

Export Citation Format

Share Document