scholarly journals FIELD INVESTIGATIONS OF SUSPENDED SEDIMENT TRANSPORT IN THE NEARSHORE ZONE

1984 ◽  
Vol 1 (19) ◽  
pp. 120 ◽  
Author(s):  
R.W. Sternberg ◽  
N.C. Shi ◽  
John P. Downing

The suspended sediment distribution and longshore sediment transport characteristics at Leadbetter Beach, Santa Barbara, California were investigated using a series of miniature optical backseatter sensors which can measure particle concentrations as high as 180 gm/£ and have 10 Hz frequency response. Vertical arrays of sensors were maintained at up to four positions across the surf zone during 7-25 February 1980 and were operated concurrently with pressure sensors and current meters. Data were collected on a daily basis over 2-4 hour periods. The data were analyzed to reveal concentration profiles of suspended sediment, the average suspended sediment loads, and the longshore particle flux in relation to varying wave conditions. Results show that sediment transport occurs as individual suspension events related to incident wave motions and infragravity motion oscillations within the surf zone; suspended sediment concentration decreases approximately logarithimically away from the seabed; the maximum values of longshore transport rates occur in the mid-surf zone; and the measured suspended sediment longshore transport rate is equal to the total longshore transport rate as predicted by existing transport equations.

2021 ◽  
Vol 9 (11) ◽  
pp. 1300
Author(s):  
Troels Aagaard ◽  
Joost Brinkkemper ◽  
Drude F. Christensen ◽  
Michael G. Hughes ◽  
Gerben Ruessink

The existence of sandy beaches relies on the onshore transport of sand by waves during post-storm conditions. Most operational sediment transport models employ wave-averaged terms, and/or the instantaneous cross-shore velocity signal, but the models often fail in predictions of the onshore-directed transport rates. An important reason is that they rarely consider the phase relationships between wave orbital velocity and the suspended sediment concentration. This relationship depends on the intra-wave structure of the bed shear stress and hence on the timing and magnitude of turbulence production in the water column. This paper provides an up-to-date review of recent experimental advances on intra-wave turbulence characteristics, sediment mobilization, and suspended sediment transport in laboratory and natural surf zones. Experimental results generally show that peaks in the suspended sediment concentration are shifted forward on the wave phase with increasing turbulence levels and instantaneous near-bed sediment concentration scales with instantaneous turbulent kinetic energy. The magnitude and intra-wave phase of turbulence production and sediment concentration are shown to depend on wave (breaker) type, seabed configuration, and relative wave height, which opens up the possibility of more robust predictions of transport rates for different wave and beach conditions.


Author(s):  
Hong-Ming Liu ◽  
Wen-cheng Liu ◽  
Chih-Yu Chiu

A three-dimensional, unstructured grid, hydrodynamic and suspended-sediment transport model (i.e., SELFE-SED) was developed to simulate temporal and spatial variations of suspended sediment and was applied to the subtropical subalpine Tsuei-Feng Lake (TFL) of Taiwan. The model was validated with measured water level and suspended‑sediment concentration in 2009, 2010, and 2011. The overall model simulation results are in quantitative agreement with the observational data. The validated model was then applied to explore the most important parameter that affects the suspended-sediment concentration and to investigate the effect of wind stress on the mean current and suspended‑sediment distribution in this shallow lake. Modeling results of sensitivity analysis reveal that the settling velocity is a crucial parameter and erosion rate is less important in the suspended-sediment transport model. Remarkable lake circulation was found based on the strength of wind speed and wind direction. Strong wind would result in higher mean current in the top layer and suspended-sediment distribution in the top and bottom layers. This study demonstrated that the wind stress played a significant influence on mean circulation and suspended-sediment transport in a shallow lake.


2012 ◽  
Vol 212-213 ◽  
pp. 55-58
Author(s):  
Jie He ◽  
Xin Sheng Zhao ◽  
Yu Fan Zhu

Taizhou Bay is an estuary with high tidel range, middle tidal current and low sediment concentration. For the sea floor is very dense, it is stable in the usual water regimen. The numerical model is introduced to simulate the suspended sediment transport in Taizhou Bay. And the recent hydrologic data and the seabed change have been validated by the numerical model. The movement of tidal current and sediment in Dagagn Bay are simulated, and the sediment siltation in port designed is calculated by the model. The results show that the sediment source is from the shoal produced by the ebb current, and the sediment silting is decreased two-thirds by the cofferdam back of the bay, because the way of the suspended sediment is stopped by the cofferdam from the shoal to the harbor.


1984 ◽  
Vol 1 (19) ◽  
pp. 131 ◽  
Author(s):  
Angus D. Gordon ◽  
John G. Hoffman

Engineering projects on the continental shelf off Sydney, Australia, have stimulated investigation into the sediment transport system of the shelf. Investigation activities associated with these projects have included: definition of sea bed morphology, sediment distribution and bedform characteristics; monitoring of steady and wave induced currents; wind data collection; suspended sediment sampling; bottom camera sediment movement investigations and analytical studies of sediment reaction to sea bed forcing functions. Sea bed velocity exceedence relationships for both wave oscillations and steady currents have been determined at depths of 24 m, 60 m and 80 m. Thresholds of sediment movement have been defined. Relative sediment transport computations have been undertaken and studies of suspended sediment concentration profiles are in progress so that absolute transport rates can be determined. The prevailing conditions, which include a mainly south bound current, are seldom sufficient to induce entrainment of shelf sediments. Transport events mainly result from major storms in the Tasman Sea which produce both high energy waves and north bound currents. Although these events are rare and short lived, the combined wave and current shear produced at the sea bed during the events gives rise to entrainment conditions which result in their dominance of the shelf sediment transport system.


2014 ◽  
Vol 123 (7) ◽  
pp. 1517-1539 ◽  
Author(s):  
Chin-Ping Lin ◽  
Ching-Nuo Chen ◽  
Yu-Min Wang ◽  
Chih-Heng Tsai ◽  
Chang-Tai Tsai

1972 ◽  
Vol 1 (13) ◽  
pp. 53 ◽  
Author(s):  
John C. Fairchild

In excess of 800 suspended sediment samples were collected from stations along the City Pier, Ventnor, New Jersey and Jennettes Pier, Nags Head, North Carolina using a tractor-mounted pump sampler. Most samples were collected within the surf zone at the Ventnor site. At the Nags Head site, sample collections included the surf zone, but generally extended over a wider range of the nearshore zone. Average sampling time was 3 minutes. Nozzle elevation varied from 3 inches above the bottom up to a maximum about mid-depth, generally not greater than 2.5 feet above bottom. Maximum concentrations at Ventnor ranged up to 2.6 ppt by weight and at Nags Head were about 4.0 ppt. Median size at Ventnor ranged from 0.12 to 0.15 mm and averaged about 0.20 mm in depths of 4 feet and less at Nags Head. Results are summarized in a series of scatter plots which relate suspended sediment concentration to nozzle height, wave height, water depth and sampling distance from an observed wave-breaker-line. Results are compared to CERC laboratory data, to two excerpted concentrations from unidirectional flow tests and to the CERC TR-4 design curve of longshore wave energy versus longshore transport.


Sign in / Sign up

Export Citation Format

Share Document