scholarly journals Assessment of the impact of land use change on natural resource land of Srinagar Metropolitan Region of Kashmir Valley

2017 ◽  
Vol 22 (07) ◽  
pp. 54-60
Author(s):  
Zahoor A. Nengroo ◽  
Arif H. Shah ◽  
M. Sultan Bhat
2009 ◽  
Vol 49 (10) ◽  
pp. 852 ◽  
Author(s):  
Andrew Bathgate ◽  
Julian Seddon ◽  
John Finalyson ◽  
Ron Hacker

Policy developed for the management of natural resources in agricultural landscapes in recent years has emphasised the need for an integrated approach. Operationally however, natural resource objectives have been pursued independently with little consideration of the link between components of ecosystems and therefore the possibility of trade-offs between components. In the absence of this information, decision makers cannot adequately assess the cost-effectiveness of alternative strategies for improving the condition of the natural resource base. The aim of this study is to assess the extent of trade-offs between multiple catchment objectives viz. biodiversity, stream salinity, stream yield, salt load, sequestration of carbon and farm profit in the Little River Catchment in Central New South Wales. Seven scenarios describing different land use alternatives for the catchment were assessed using spatial datasets of catchment characteristics. A suite of models was used to determine the impact of land use change on these characteristics over a 50-year timeframe. The results of the analysis indicate that changes in farm production methods may deliver small improvements in some indicators of catchment health. However, significant improvements would require the establishment of large areas of woody perennials and this is only likely to occur with significant public investment, given the consequent large reduction in farm profit. Trade-offs between several catchment indicators were identified. Significantly the benefits of reducing stream salinity were outweighed by the losses resulting from reduced stream flow. Generally, the financial benefits of improving the indicators of resource condition were low relative to the investment required. It was concluded therefore that the environmental value of these improvements would need to be substantial to justify the investment.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Sign in / Sign up

Export Citation Format

Share Document