scholarly journals Properties of Shotcrete According to Accelerator Types and Mixing Ratios

2021 ◽  
Vol 21 (6) ◽  
pp. 1-7
Author(s):  
Seunghak Choi ◽  
Seungyeon Han ◽  
Hyeonsuk Kim ◽  
Kyongku Yun ◽  
Taeho Ha

Shotcrete should be attached to the ground and should have stable strength for a long-term. It should develop strength earlier for rapid work. Therefore, in this study, three types of accelerators—aluminate, cement mineral, and alkali-free—were selected and mixed to secure the initial strength. Depending on the type and mixing rate of each accelerator, slump, air amount, and compressive strength were used to evaluate the basic properties, boiling water absorption test, and chloride ion penetration resistance to conduct durability analysis. The mixing of aluminate-based and cement-mineral-based accelerators was effective in improving the initial strength, and alkali-free accelerator was effective in improving the long-term strength. The mixture to which accelerators were not mixed showed the highest water-tightness.

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3265 ◽  
Author(s):  
Anna Szcześniak ◽  
Jacek Zychowicz ◽  
Adam Stolarski

This paper presents research on the impact of fly ash addition on selected physical and mechanical parameters of concrete made with slag cement. Experimental tests were carried out to measure the migration of chloride ions in concrete, the tightness of concrete exposed to water under pressure, and the compressive strength and tensile strength of concrete during splitting. Six series of concrete mixes made with CEM IIIA 42.5 and 32.5 cement were tested. The base concrete mix was modified by adding fly ash as a partial cement substitute in the amounts of 25% and 33%. A comparative analysis of the obtained results indicates a significant improvement in tightness, especially in concrete based on CEM IIIA 32.5 cement and resistance to chloride ion penetration for the concretes containing fly ash additive. In the concretes containing fly ash additive, a slower rate of initial strength increase and high strength over a long period of maturation are shown. In accordance with the presented research results, it is suggested that changes to the European standardization system be considered, to allow the use of fly ash additive in concrete made with CEM IIIA 42.5 or 32.5 cement classes. Such a solution is not currently acceptable in standards in some European Countries.


2013 ◽  
Vol 438-439 ◽  
pp. 117-120
Author(s):  
Jun Tao Ma ◽  
Liang Yan ◽  
Yu Ping Tong ◽  
Hui Xian Wang

Corrosion of the steel reinforcement in the concrete structure caused by chloride ion penetration becomes more serious in the marine environment. Metakaolin has been widely used in the concrete structure to improve the strength and durability. The combination of metakaolin (MK) and fine fly ash (FA) was studied in the article and the penetration behavior of concrete with various contents of metakaolin-based modifier is investigated. The penetration resistance of concrete was tested in combination of electric flux test. The improving mechanism was studied with mercury intrusion porosimetry analysis (MIP). The experiment results indicate that metakaolin-based modifier improved the penetration resistance of concrete obviously. The combination of fine fly ash weakened the water sucking action of metakaolin and preserved the working performance of concrete. The pore size distribution of concrete containing metakaolin-based modifier has been optimized to improve the microstructure and enhance the penetration resistance of concrete.


2014 ◽  
Vol 629-630 ◽  
pp. 173-182 ◽  
Author(s):  
Gai Fei Peng ◽  
Juan Yang ◽  
Jing Yan Wang

An experimental investigation was conducted on the durability of recycled aggregate concretes with the water to binder ratios of 0.26 and 0.60, including chloride ion penetration resistance test, freezing-thawing resistance test and water penetration resistance. Natural aggregate, recycled aggregate untreated and recycled aggregate treated by sulfuric acid solution, were employed. Results indicated that, 3 mol/L acid concentration and the 7 days soaking duration was the optimum to remove the attached mortars in recycled aggregate, and its removal rate could reach to 90.8%. Water penetration resistance, chloride ion penetration resistance and freezing-thawing resistance of concrete with 0.26 W/B was superior to that of concrete with 0.60 W/B. The more pores in the internal of concrete with 0.60 W/B could be attributed to that. Durability of recycled aggregate concrete, incorporating recycled aggregate treated by sulfuric acid solution, was improved. In particular, the improvement in recycled high strength concrete was significant.


2013 ◽  
Vol 804 ◽  
pp. 12-16 ◽  
Author(s):  
Shi Yi Zhang ◽  
Ying Fang Fan ◽  
Ning Ning Li

The effect of superplasticizer on the mechanical property and chloride permeability of concrete containing GGBFS is investigated in this paper. Compressive and rapid chloride-ion diffusion tests were conducted to determine the axial compressive and chloride-ion diffusion coefficients of GGBFS modified concrete. The tests result indicated that the compressive strength of GGBFS modified concrete with the addition of 2wt. % superplasticizer are further improved at 14 and 28 days. Superplasticizer can significantly enhance the resistance to chloride ion penetration of concrete containing GGBFS with a reasonable additive content at long-term age. The optimum content of superplasticizer is suggested to be 1wt. % to 2wt. % of the cementitous materials.


Sign in / Sign up

Export Citation Format

Share Document