anticonvulsant effect
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 84)

H-INDEX

39
(FIVE YEARS 3)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 168
Author(s):  
Fahad Alqarni ◽  
Hala S. Eweis ◽  
Ahmed Ali ◽  
Aziza Alrafiah ◽  
Mohammed Alsieni ◽  
...  

Valproic acid (VPA) has toxic metabolites that can elevate oxidative stress markers, and the hepatotoxicity of VPA has been reported. Coenzyme Q10 (CoQ10) is one of the most widely used antioxidants. The effect of CoQ10 on epileptogenesis and VPA hepatotoxicity were examined. Rats were randomly divided into five groups: the control group received 0.5% methylcellulose by oral gavages daily and saline by intraperitoneal injection three times weekly. The PTZ group received 1% methylcellulose by gavages daily and 30 mg/kg PTZ by intraperitoneal injection three times weekly. The valproic acid group received 500 mg/kg valproic acid by gavage and 30 mg/kg PTZ, as above. The CoQ10 group received 200 mg/kg CoQ10 by gavages daily and 30 mg/kg PTZ, as above. The Valproic acid + CoQ10 group received valproic acid and CoQ10, as above. Results: CoQ10 exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. CoQ10 combined with VPA induced a more significant reduction in oxidative stress and improved the histopathological changes in the brain and liver compared to VPA treatment. In addition, CoQ10 reduced the level of toxic VPA metabolites. These findings suggest that the co-administration of CoQ10 with VPA in epilepsy might have therapeutic potential by increasing antiepileptic activity and reducing the hepatotoxicity of VPA.


2022 ◽  
Author(s):  
Xirui He ◽  
Yan Yang ◽  
Xufang Yuan ◽  
Yin Sun

Abstract Epilepsy is a serious public health problem in the world. At present, the effect of drug treatment of epilepsy is are not satisfactory. Medicinal plants as pharmaceuticals and for healthcare treatments in the management of epilepsy in China for many centuries. Especially, Gastrodia elata Bl.-Acorus tatarinowii, as a classic and important herb pairs in folk medicine, has been used in folk medicine to control seizures. However, the animal experiment data of its anticonvulsant effect is limited in the literature. The objective of this study was to mainly analyze the anticonvulsant activity of Gastrodia elata-Acorus tatarinowii (GEAT) decoction in maximal electroshock (MES), pentylenetetrazole (PTZ) and trimercaptopropionic acid (3-MP) induced seizures in mice, providing scientific basis for the treatment of convulsive disorders in traditional medicine. In addition, the improvement effect were examined on seizure severity, anxiety, cognitive dysfunction, inflammation and oxidative stress in PTZ kindled mice. The results showed that GEAT decoction dose-dependently protected mice against MES, 3-MP and PTZ induced acute seizures. Meanwhile, GEAT decoction ameliorated seizure severity, decreased the accumulation of inflammatory mediators TNF-α, IL-1β, and IL-6, mitigated oxidative stress, as well as alleviated anxious-like behavior and cognitive deficits in PTZ-kindled mice. Our data evidenced that the anticonvulsant properties attributed to GEAT decoction as adjunctive therapy for epileptic patients in folk medicine.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Lyndsey L. Anderson ◽  
Michael Udoh ◽  
Declan Everett-Morgan ◽  
Marika Heblinski ◽  
Iain S. McGregor ◽  
...  

Abstract Objective Cannabigerolic acid (CBGA), a precursor cannabinoid in Cannabis sativa, has recently been found to have anticonvulsant properties in the Scn1a+/- mouse model of Dravet syndrome. Poor brain penetration and chemical instability of CBGA limits its potential as an anticonvulsant therapy. Here, we examined whether CBGA methyl ester, a more stable analogue of CBGA, might have superior pharmacokinetic and anticonvulsant properties. In addition, we examined whether olivetolic acid, the biosynthetic precursor to CBGA with a truncated (des-geranyl) form, might possess minimum structural requirements for anticonvulsant activity. We also examined whether olivetolic acid and CBGA methyl ester retain activity at the epilepsy-relevant drug targets of CBGA: G-protein-coupled receptor 55 (GPR55) and T-type calcium channels. Methods The brain and plasma pharmacokinetic profiles of CBGA methyl ester and olivetolic acid were examined following 10 mg/kg intraperitoneal (i.p.) administration in mice (n = 4). The anticonvulsant potential of each was examined in male and female Scn1a+/- mice (n = 17–19) against hyperthermia-induced seizures (10–100 mg/kg, i.p.). CBGA methyl ester and olivetolic acid were also screened in vitro against T-type calcium channels and GPR55 using intracellular calcium and ERK phosphorylation assays, respectively. Results CBGA methyl ester exhibited relatively limited brain penetration (13%), although somewhat superior to that of 2% for CBGA. No anticonvulsant effects were observed against thermally induced seizures in Scn1a+/- mice. Olivetolic acid also showed poor brain penetration (1%) but had a modest anticonvulsant effect in Scn1a+/- mice increasing the thermally induced seizure temperature threshold by approximately 0.4°C at a dose of 100 mg/kg. Neither CBGA methyl ester nor olivetolic acid displayed pharmacological activity at GPR55 or T-type calcium channels. Conclusions Olivetolic acid displayed modest anticonvulsant activity against hyperthermia-induced seizures in the Scn1a+/- mouse model of Dravet syndrome despite poor brain penetration. The effect was, however, comparable to the known anticonvulsant cannabinoid cannabidiol in this model. Future studies could explore the anticonvulsant mechanism(s) of action of olivetolic acid and examine whether its anticonvulsant effect extends to other seizure types.


2021 ◽  
Vol 11 (2) ◽  
pp. 113-119
Author(s):  
Edson Fernando Muller Guzzo ◽  
Gabriel de Lima Rosa ◽  
Rafael Padilha Bremm ◽  
Caroline Paula Meska ◽  
Carmen Regla Vargas ◽  
...  

Background and Purpose: Oxidative stress (OS) is defined as an excessive production of reactive oxygen species that cannot be neutralized by the action of antioxidants, but also as an alteration of the cellular redox balance. The relationship between OS and epilepsy is not yet fully understood. The objective of this study was to evaluate the effect of dexamethasone on OS levels and memory in the kindling model induced by pentylenetetrazole.Methods: The animals were divided in six groups: control group that received no treatment, vehicle group treated with vehicle, diazepam group, and groups treated with dexamethasone (1, 2 and 4 mg/kg). Treated animals received pentylenetetrazole in alternated days for 15 days. Inhibitory avoidance test was conducted in 2 hours and OS was evaluated after animal sacrifice.Results: Regarding the treatment with dexamethasone, there was no significant difference when compared to the control groups in relation to the inhibitory avoidance test. On OS levels, there was a decrease in catalase activity levels in the hippocampus and an increase in thiobarbituric acid reactive substances and glutathione peroxidase levels in the hippocampus.Conclusions: The anticonvulsant effect of dexametasone remains uncertain. Immunological mechanisms, with the release of cytokines and inflammatory mediators, seem to be the key to this process. The mechanisms that generate OS are probably related to the anticonvulsant effects found.


Folia Medica ◽  
2021 ◽  
Vol 63 (6) ◽  
pp. 827-833
Author(s):  
Zdravka Vasileva

Epilepsy is a chronic neurological disease with recurrent seizures. Its incidence, the social and psychological aspects of epilepsy-associated stigmatization in society, the medical risk of severe seizures, and the challenges in treatment confirm its medical and social significance. The pathogenesis of the diseases is associated with abnormal activity of a population of neurons due to various mechanisms, the most frequent being oxidative stress, glutamate excitotoxicity, and mitochondrial dysfunction. In the last 3-4 decades, the possible connection between epilepsy and melatonin – a neurohormone secreted by the pineal gland – has been sought and studied. Various physiological functions of melatonin in humans have been proven – regulation of circadian rhythms (diurnal, seasonal), sleep and wakefulness, participation in the processes of thermoregulation, tumour growth and aging, sexual activity and reproductive functions. It also has immunomodulatory, cytoprotective and antioxidant activity. The results from the studies with experimental models with animals conducted so far in search of a correlation between melatonin and epileptogenesis are mainly in support of the hypothesis of its anticonvulsant effect. The studies with humans are diverse in design, with a smaller number of participants, and the results are not always in explicit support of this hypothesis. The correlation between melatonin concentration and the course of the disease in patients with epilepsy has been discussed. The possibility of adding melatonin to anti-epileptic therapy has also been studied recently.


2021 ◽  
Vol 15 (1) ◽  
pp. 49
Author(s):  
Eva Kudova ◽  
Pavel Mares ◽  
Martin Hill ◽  
Katerina Vondrakova ◽  
Grygoriy Tsenov ◽  
...  

Pregnanolone glutamate (PA-G) is a neuroactive steroid that has been previously demonstrated to be a potent neuroprotective compound in several biological models in vivo. Our in vitro experiments identified PA-G as an inhibitor of N-methyl-D-aspartate receptors and a potentiator of γ-aminobutyric acid receptors (GABAARs). In this study, we addressed the hypothesis that combined GABAAR potentiation and NMDAR antagonism could afford a potent anticonvulsant effect. Our results demonstrated the strong age-related anticonvulsive effect of PA-G in a model of pentylenetetrazol-induced seizures. PA-G significantly decreased seizure severity in 12-day-old animals, but only after the highest dose in 25-day-old animals. Interestingly, the anticonvulsant effect of PA-G differed both qualitatively and quantitatively from that of zuranolone, an investigational neurosteroid acting as a potent positive allosteric modulator of GABAARs. Next, we identified 17-hydroxy-pregnanolone (17-OH-PA) as a major metabolite of PA-G in 12-day-old animals. Finally, the administration of PA-G demonstrated direct modulation of unexpected neurosteroid levels, namely pregnenolone and dehydroepiandrosterone sulfate. These results suggest that compound PA-G might be a pro-drug of 17-OH-PA, a neurosteroid with a promising neuroprotective effect with an unknown mechanism of action that may represent an attractive target for studying perinatal neural diseases.


Author(s):  
Ihnat Havrylov ◽  
Vadim Tsyvunin ◽  
Sergiy Shtrygol’ ◽  
Diana Shtrygol’

"Non-antiepileptic" drugs have a strong potential as adjuvants in multidrug-resistant epilepsy treatment. In previous study the influence of low doses of digoxin, which do not affect the myocardium, on the anticonvulsant potential of classical commonly used anti-epileptic drugs under conditions of seizures, induced by pentylenetetrazole and maximal electroshock, has been investigated. The aim of the study was to investigate the influence of digoxin at a sub-cardiotonic dose on the anticonvulsant potential of carbamazepine and lamotrigine in experimental seizures with different neurochemical mechanisms. Material and methods: A total of 192 random-bred male albino mice weighting 22–25 g were used. Carbamazepine and lamotrigine were administered intragastrically in conditionally effective (ED50) and sub-effective (½ ED50) doses: carbamazepine at doses of 100 and 50 mg/kg; lamotrigine at doses of 25 and 12.5 mg/kg. Digoxin was administered subcutaneously at a sub-cardiotonic dose of 0.8 mg/kg as an adjuvant to carbamazepine and lamotrigine in ½ ED50. Picrotoxin (2.5 mg/kg subcutaneously); thiosemicarbazide (25 mg/kg intraperitoneally); strychnine (1.2 mg/kg subcutaneously); camphor (1000 mg/kg intraperitoneally) were used as convulsant agents. Results: It was found that digoxin not only has its own permanent anticonvulsant effect on different models of paroxysms with different neurochemical mechanisms of development, but also significantly enhances the anticonvulsant potential of carbamazepine (to a lesser extent – lamotrigine) regardless of the pathogenesis of experimental paroxysms. Conclusion: Based on the results, it can be concluded that digoxin has a high potential as an adjuvant medicine in complex epilepsy treatment because it enhances the efficiency of low-dose traditional anticonvulsants carbamazepine and lamotrigine


Sign in / Sign up

Export Citation Format

Share Document