raman spectra
Recently Published Documents


TOTAL DOCUMENTS

11242
(FIVE YEARS 776)

H-INDEX

144
(FIVE YEARS 11)

2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


2022 ◽  
Author(s):  
Quanhong Ou ◽  
Xien Yang ◽  
Weiye Yang ◽  
Liqin Jiang ◽  
Kai Qian ◽  
...  

Abstract Background: Raman and fluorescence spectra techniques are potential tools for disease diagnosis. In recent years, the application of Raman and fluorescence spectra techniques in biological studies has increased a great deal, and clinical investigations relevant to cancer detection by spectroscopic means have attracted particularly attention from both clinical and non-clinical researchers. Methods: In this article, Raman and fluorescence spectra were employed for the detection of liver cancer and healthy individuals using their serum samples. These serum samples were compared with their spectral features acquired by Raman and fluorescence spectroscopy to initially establish spectral features that can be considered spectral markers of liver cancer diagnosis. Resuits: The intensity differences from characteristic peaks of carotene, protein and lipid associated Raman spectra were clearly observed in liver cancer patient serum samples versus normal human serum. The changes in the serum fluorescence profiles of liver cancer patients were also analyzed. To probe the capacity and contrast of Raman spectroscopy as an analytical implement for the early diagnosis of liver cancer, principal component analysis (PCA) was used to analyze the Raman spectra of controls , liver cancer patients and healthy individuals. Furthermore, the Partial Least Squares-Discriminant Analysis (PLS-DA) was performed to compare the diagnostic performance of Raman spectroscopy for the classification of disease samples and healthy samples.Conclusion: Compare with the existing diagnostic techniques, the Raman spectroscopy technique has an excellent advantage in extremely low sample requirements, ease of use and ideal screening procedures. Thus, Raman spectroscopy has great potential to be developed as a powerful tool for distinguishing between healthy and liver cancer serum samples.


2022 ◽  
Vol 905 ◽  
pp. 192-197
Author(s):  
Lin Lin Cai ◽  
Xiao Qing Jiang

A new composite of graphene/MoS2 is synthesized by co-exfoliation of graphite and MoS2 in isopropanol (IPA) using the organic salt potassium sodium tartrate as the assistant. The composite is characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The results of TEM, XPS, and Raman spectra all illustrate that the graphene/MoS2 composite has been synthesized successfully. Furthermore, the composite is modified on glassy carbon electrode to fabricate a sensor to detect dopamine (DA). The sensor shows two linear detection ranges for DA. One is 1-45 μM and the other is 45-120 μΜ. The detection limit of the sensor (S/N=3) is 0.76 μM.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 279
Author(s):  
Alba Espina ◽  
Santiago Sanchez-Cortes ◽  
Zuzana Jurašeková

FT-Raman, FTIR, and SERS spectra of the structurally related gallnut polyphenols tannic acid, gallic acid, pyrogallol, and syringic acid are reported in this work aiming at performing a comparative assignation of the bands and finding specific marker features that can identify these compounds in complex polyphenol mixtures. Tannic and gallic acids are the principal components in oak gallnuts, and they can be found in iron gall inks. The different functional groups existing in these molecules and their spatial distribution lead to slight changes of the vibrations. The Raman spectra are dominated by bands corresponding to the ring vibrations, but the substituents in the ring strongly affect these vibrations. In contrast, the FTIR spectra of these molecules are dominated by the peripheral oxygen-containing substituents of the aromatic ring and afford complementary information. SERS spectroscopy can be used to analyze trace amounts of these compounds, but the spectra of these polyphenols show strong changes in comparison with the Raman spectra, indicating a strong interaction with the metal. The most significant modification observed in the SERS spectra of these compounds is the weakening of the benzene 8a ring vibration and the subsequent intensification of the 19a mode of the benzene ring. This mode is also more intense in the FTIR spectra, and its intensification in the SERS spectra could be related to a drastic change in the molecular polarizability associated with the interaction of the polyphenol with the metal in Ag NPs.


2022 ◽  
pp. 108818
Author(s):  
Elhadji Cheikh Talibouya Ba ◽  
Marcello Rosa Dumont ◽  
Paulo Sérgio Martins ◽  
Bárbara da Silva Pinheiro ◽  
Matheus Philippe Martins da Cruz ◽  
...  

Author(s):  
Kota Tsujimori ◽  
Jun Hirotani ◽  
Shunta Harada

AbstractThe number of data points of digitally recorded spectra have been limited by the number of multichannel detectors employed, which sometimes impedes the precise characterization of spectral peak shape. Here we describe a methodology to increase the number of data points as well as the signal-to-noise (S/N) ratio by applying Bayesian super-resolution in the analysis of spectroscopic data. In our present method, first, the hyperparameters for the Bayesian super-resolution are determined by a virtual experiment imitating actual experimental data, and the precision of the super-resolution reconstruction is confirmed by the calculation of errors from the ideal values. For validation of the super-resolution reconstruction of spectroscopic data, we applied this method to the analysis of Raman spectra. From 200 Raman spectra of a reference Si substrate with a data interval of about 0.8 cm−1, super-resolution reconstruction with a data interval of 0.01 cm−1 was successfully achieved with the promised precision. From the super-resolution spectrum, the Raman scattering peak of the reference Si substrate was estimated as 520.55 (+0.12, −0.09) cm−1, which is comparable to the precisely determined value reported in previous works. The present methodology can be applied to various kinds of spectroscopic analysis, leading to increased precision in the analysis of spectroscopic data and the ability to detect slight differences in spectral peak positions and shapes.


2022 ◽  
pp. 100043
Author(s):  
Wenxu Zhang ◽  
Travis J.A. Craddock ◽  
Yajuan Li ◽  
Mira Swartzlander ◽  
Robert R. Alfano ◽  
...  

2022 ◽  
Vol 130 (1) ◽  
pp. 84
Author(s):  
А.С. Крылов ◽  
А.Н. Втюрин ◽  
И.А. Гудим ◽  
И.В. Немцев ◽  
С.Н. Крылова

The Raman spectra of four crystals of TbFe3-хGax (BO3) 4 solid solutions (x from 0 to 0.54) were studied in the temperature range from 8 to 350 K. The temperatures of structural phase transitions were determined. The observed spectral behavior is characteristic to condensation and restoration of soft modes. Soft modes are associated with a structural phase transition from the R32 phase to the P3121 phase. The Compositions-Temperature phase diagram was constructed


Sign in / Sign up

Export Citation Format

Share Document