optical rectification
Recently Published Documents


TOTAL DOCUMENTS

586
(FIVE YEARS 85)

H-INDEX

53
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Zhuang Zhao

Abstract The effects of tuned quantum dots (QD) on the optical rectification (OR) coefficient under the action of the external magnetic field, hydrostatic pressure, temperature and quantum dot radius is theoretically studied in detail. The tuned quantum dots are subjected to a uniform magnetic field perpendicular to the structure plane. Within the framework of effective mass approximation and parabolic approximation, the energy level and wave function are derived, and the nonlinear optical rectification coefficients are calculated by the compact density matrix method and iterative method. Numerical results show that under different constraint parameters, the resonance peak of the OR coefficient moves in the direction of high energy or low energy, that is, red shift or blue shift. At the same time, the peak value of the OR coefficient will increase or decrease with the change of the parameters.


2021 ◽  
Author(s):  
Léo Guiramand ◽  
Joel Edouard NKECK ◽  
xavier ropagnol ◽  
Tsuneyuki Ozaki ◽  
Francois Blanchard

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1431
Author(s):  
Daniel Hofstetter ◽  
Cynthia Aku-Leh ◽  
Hans Beck ◽  
David P. Bour

An optically activated, enhancement mode heterostructure field effect transistor is proposed and analytically studied. A particular feature of this device is its gate region, which is made of a photovoltaic GaN/AlN-based superlattice detector for a wavelength of 1.55 µm. Since the inter-subband transition in this superlattice does normally not interact with TE-polarized (or vertically incoming) radiation, a metallic second-order diffraction grating on the transistor gate results in a re-orientation of the light into the horizontal direction—thus providing the desired TM-polarization. Upon illumination of this gate, efficient inter-subband absorption lifts electrons from the ground to the first excited quantized state. Due to partial screening of the strong internal polarization fields between GaN quantum wells and AlN barriers, this slightly diagonal transition generates an optical rectification voltage. Added to a constant electrical bias, this optically produced gate voltage leads to a noticeable increase of the transistor’s source-drain current. The magnitude of the bias voltage is chosen to result in maximal transconductance. Since such a phototransistor based on high-bandgap material is a device involving only fast majority carriers, very low dark and leakage currents are expected. The most important advantage of such a device, however, is the expected switching speed and, hence, its predicted use as an optical logic gate for photonic computing. In the absence of a p-n-junction and thus of both a carrier-induced space charge region, and the parasitic capacitances resulting thereof, operation frequencies of appropriately designed, sufficiently small phototransistors reaching 100 GHz are envisaged.


2021 ◽  
Author(s):  
Ed L. Wooten ◽  
Charles H. Cox

2021 ◽  
Author(s):  
Fugang Xi ◽  
He Yang ◽  
Vladislav Khayrudinov ◽  
Yuhang He ◽  
Tuomas Haggren ◽  
...  

Abstract The development of powerful terahertz (THz) emitters is the cornerstone for future THz applications, such as communication, medical biology, non-destructive inspection, and scientific research. Here, we report the THz emission properties and mechanisms of mushroom-shaped InAs nanowire (NW) network using linearly polarized laser excitation. By investigating the dependence of THz signal to the incidence pump light properties (e.g., incident angle, direction, fluence, and polarization angle), we conclude that the THz wave emission from the InAs NW network is induced by the combination of linear and nonlinear optical effects. The former is a transient photocurrent accelerated by the photo-Dember field, while the latter is related to the resonant optical rectification effect. Moreover, the p-polarized THz wave emission component is governed by the linear optical effect with a proportion of ~85% and the nonlinear optical effect of ~15%. In comparison, the s-polarized THz wave emission component is mainly decided by the nonlinear optical effect. The THz emission is speculated to be enhanced by the localized surface plasmon resonance absorption of the In droplets on top of the NWs. This work verifies the nonlinear optical mechanism in the THz generation of semiconductor NWs and provides an enlightening reference for the structural design of powerful and flexible THz surface and interface emitters in transmission geometry.


Sign in / Sign up

Export Citation Format

Share Document