cyathus stercoreus
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 10 (3) ◽  
pp. 41-46
Author(s):  
Vyacheslav Aleksandrovich Vlasenko ◽  
Dejidmaa Turmunkh ◽  
Chechekmaa Dembirelovna Nazyn ◽  
Anastasia Vladimirovna Vlasenko

Species distribution is undergoing rapid changes in the face of habitat modification and climate change. This leads to concerns about the conservation of declining species and raises ecological questions about the processes that govern species ranges and niches. As a consequence, the predictive distribution models which match species records to patterns in abiotic environmental variables have become an established tool in ecology and conservation. Maximum entropy spatial distribution modelling (MaxEnt) solves this problem by inferring species distributions and environmental tolerance based on the occurrence data. The objectives of this research were the ecological niche and running the habitat suitability modelling on dung fungal species Cyathus stercoreus based on its bioclimatic and substrate features within Asia. We constructed a map of the current geographical distribution of the dung fungus Cyathus stercoreus using MaxEnt method. We included in the model 19 WorldClim bioclimatic variables with the corresponding altitude data, and seven spatially well-dispersed species occurrence records. Despite its narrow substrate specialization, Cyathus stercoreus is climatically quite plastic and is able to develop in a wide range of variations in mean annual temperatures and mean annual precipitation, which follows from the analysis of a two-dimensional niche based on two climatic variables using the Envelope method. Modeling the distribution of basidiomycete dung fungi using the Cyathus stercoreus as an example showed that the area of their potential distribution with a zone of favorable climate is very large. Most of the zone with a favorable climate is located in the area with the probability of the presence of species up to 70%. Cyathus stercoreus is not associated with any particular habitat type. On the territory of Russia, in the south of Siberia, the species is located on the northern border of its range in the area with the least favorable bioclimatic environmental factors.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Ravi S Patel ◽  
Akash G Vanzara ◽  
Nimisha R Patel ◽  
Ajit M Vasava ◽  
Sachin M Patil ◽  
...  

Background: Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (Mpro) using an in-silico analysis. Methods: Resolution Liquid Chromatography Mass Spectrometry analysis (HR-LCMS) was used for the bioactive profiling of ethanolic crude extract of Dictyophora indusiata, Geastrum triplex and Cyathus stercoreus. Of which, only bergenin (D. indusiata), quercitrin (G. triplex) and dihydroartemisinin (C. stercoreus) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 Mpro, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2. Results: Total 118 bioactive compounds were analyzed from the crude extract of used fungi and identified using HR LC/MS analysis. The binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively after docking analysis. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Conclusion: Present investigation suggests that these three compounds may be used as alternative inhibitors against SARSCoV-2 Mpro. However, further research is necessary to assess in vitro potential of these compounds. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.


Author(s):  
Ravi Patel ◽  
Akash Vanzara ◽  
Nimisha Patel ◽  
Ajit Vasava ◽  
Sachin Patil ◽  
...  

Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (M<sup>pro</sup>) using an <i>in-silico</i> analysis. Nearly 118 bioactive compounds were extracted from <i>Dictyophora indusiata</i>, <i>Geassstrum triplex</i> and <i>Cyathus stercoreus </i>and identified using HR LC/MS analysis. Of which, only bergenin (<i>D. indusiata</i>), quercitrin (<i>G. triplex</i>) and dihydroartemisinin (<i>C. stercoreus</i>) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 M<sup>pro</sup>, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2 and the binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Present investigation suggests that these three drugs may be used as alternative inhibitors against SARS-CoV-2 M<sup>pro</sup>. However, further research is necessary to assess <i>in vitro</i> potential of these drugs. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.


Author(s):  
Ravi Patel ◽  
Akash Vanzara ◽  
Nimisha Patel ◽  
Ajit Vasava ◽  
Sachin Patil ◽  
...  

Emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection has given rise to COVID-19 pandemic, that is wreaking havoc worldwide. Therefore, there is an urgent need to find out novel drugs to combat SARS-CoV-2 infection. In this backdrop, the present study was aimed to assess potent bioactive compounds from different fungi as potential inhibitors of SARS-CoV-2 main protease (M<sup>pro</sup>) using an <i>in-silico</i> analysis. Nearly 118 bioactive compounds were extracted from <i>Dictyophora indusiata</i>, <i>Geassstrum triplex</i> and <i>Cyathus stercoreus </i>and identified using HR LC/MS analysis. Of which, only bergenin (<i>D. indusiata</i>), quercitrin (<i>G. triplex</i>) and dihydroartemisinin (<i>C. stercoreus</i>) were selected based on their medicinal uses, binding score and active site covered. The 6LU7, a protein crystallographic structure of SARS-CoV-2 M<sup>pro</sup>, was docked with bergenin, quercitrin and dihydroartemisinin using Autodock 4.2 and the binding energies obtained were -7.86, -10.29 and -7.20 kcal/mol, respectively. Bergenin, quercitrin and dihydroartemisinin formed hydrogen bond, electrostatic interactions and hydrophobic interactions with foremost active site amino acids THR190, GLU166, GLN189, GLY143, HIS163, HIS164, CYS145 and PHE140. Present investigation suggests that these three drugs may be used as alternative inhibitors against SARS-CoV-2 M<sup>pro</sup>. However, further research is necessary to assess <i>in vitro</i> potential of these drugs. To the best of our knowledge, present investigation reported these three bioactive compounds of fungal origin for the first time.


2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xia Yin ◽  
Jianzhao Qi ◽  
Yixiao Li ◽  
Ze’an Bao ◽  
Peng Du ◽  
...  
Keyword(s):  

2018 ◽  
Vol 10 (1) ◽  
pp. 445-447
Author(s):  
Bhuvnesh Yadav

To improve the feed quality removal of lignin from plant biomass is essential. To improve the activity of laccase of white rot fungi, aromatic inducers are used. In this study three inducers [Resorcinol (5mM and 10mM), Xylidine and Anisaldehyde] to induce the production of laccase enzyme in the culture of fungus: Cyathus stercoreus. Resorcinol (10mM) was found to be the best inducer among the rest. The enzyme activity was observed highest on the 8th day of induction (226.7U/ml). Protein content was also increased with the age of the culture. 80% ammonium sulphate was suitable for precipitating the laccase enzyme for culture filtrate. The laccase production can be enhanced with inducers and can be further used for the removal of lignin from the plant biomass.


Sign in / Sign up

Export Citation Format

Share Document