active layer thickness
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 144)

H-INDEX

40
(FIVE YEARS 7)

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Olga I. Gabysheva ◽  
Viktor A. Gabyshev ◽  
Sophia Barinova

Large rivers are important links between continents and oceans for material flows that have a global impact on marine biogeochemistry. Processes in the catchment areas of large rivers can affect the flow of solutes into the global ocean. The goal was to determine how the concentration of individual components of nutrients in the rivers of Eastern Siberia changes depending on the active layer thickness of the permafrost (ALT) and to elucidate whether the ALT is a factor that can control nutrient flux to the Arctic Ocean. The method of canonical correlation analysis was applied to the data on the concentration of nutrients in the 12 largest rivers of Eastern Siberia and the active layer thickness in their catchments. We found that the concentration of nutrients such as ammonium ion (NH4) and total phosphorus (Ptotal) in river waters is higher in catchments with a deeper active layer. The waters of the mountain rivers in the south of the region (the Chara and Vitim rivers) are the richest in nutrients. Arctic rivers such as the Indigirka and Anabar were low in nutrients. The permeability of soils also affects the discharge of nutrients into rivers with surface runoff. We conclude that in the future, in the context of global climatic changes and the projected deepening of the active layer throughout the permafrost zone of the Northern Hemisphere, an increase in the supply of nutrients to the Arctic Ocean is possible.


2022 ◽  
Vol 804 ◽  
pp. 150182
Author(s):  
Guanji Li ◽  
Mingyi Zhang ◽  
Wansheng Pei ◽  
Andrey Melnikov ◽  
Ivan Khristoforov ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 55-66 ◽  
Author(s):  
Valery I. Grebenets ◽  
Vasily A. Tolmanov ◽  
Dmitry A. Streletskiy

This paper provides information on active layer thickness (ALT) dynamics, or seasonal thawing above permafrost, from a Circumpolar Active Layer Monitoring (CALM) site near the city of Norilsk on the Taimyr Peninsula (north-central Siberia) and the influences of meteorological and landscape properties on these dynamics under a warming climate, from 2005 to 2020. The average ALT in loamy soils at this 1 ha CALM site over the past 16 years was 96 cm, higher than previous studies from 1980s conducted at the same location, which estimated ALT to be 80 cm. Increasing mean annual air temperatures in Norilsk correspond with the average ALT increasing trend of 1 cm/year for the observation period. Active layer development depends on summer thermal and precipitation regimes, time of snowmelt, micro-landscape conditions, the cryogenic structure (ice content) of soils, soil water content leading up to the freezing period, drainage, and other factors. Differences in ALT, within various micro landscape conditions can reach 200% in each of the observation periods.


2021 ◽  
Vol 11 (24) ◽  
pp. 11668
Author(s):  
Mari Carmen López-González ◽  
Gonzalo del Pozo ◽  
Diego Martín-Martín ◽  
Laura Muñoz-Díaz ◽  
José Carlos Pérez-Martínez ◽  
...  

Perovskite solar cells (PSCs) have become very popular due to the high efficiencies achieved. Nevertheless, one of the main challenges for their commercialization is to solve their instability issues. A thorough understanding of the processes taking place in the device is key for the development of this technology. Herein, J-V measurements have been performed to characterize PSCs with different active layer thicknesses. The solar cells’ parameters in pristine devices show no significant dependence on the active layer thickness. However, the evolution of the solar cells’ efficiency under ISOS-L1 protocol reveals a dramatic burn-in degradation, more pronounced for thicker devices. Samples were also characterized using impedance spectroscopy (IS) at different degradation stages, and data were fitted to a three RC/RCPE circuit. The low frequency capacitance in the thickest samples suffers a strong increase with time, which suggests a significant growth in the mobile ion population. This increase in the ion density partially screens the electric field, which yields a reduction in the extracted current and, consequently, the efficiency. This paper has been validated with two-dimensional numerical simulations that corroborate (i) the decrease in the internal electric field in dark conditions in 650 nm devices, and (ii) the consequent reduction in the carrier drift and, therefore, of the effective current extraction and efficiency.


Author(s):  
Ruth K. Varner ◽  
Patrick M. Crill ◽  
Steve Frolking ◽  
Carmody K. McCalley ◽  
Sophia A. Burke ◽  
...  

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3187
Author(s):  
Xuenan Zhao ◽  
Honggang Gu ◽  
Linya Chen ◽  
Shiyuan Liu

Embedding nanostructures in organic solar cells (OSCs) is a well-known method to improve the absorption efficiency of the device by introducing the plasma resonance and scattering effects without increasing the active layer thickness. The introduction of nanostructures imposes greater demands on the optical analysis method for OSCs. In this paper, the generalized rigorous coupled-wave analysis (GRCWA) is presented to analyze and optimize the performance of coherent-incoherent hybrid organic solar cells (OSCs) with nanostructures. Considering the multiple reflections of light scattered within the glass substrate by the device, the correction vector g is derived, then the modified expressions for the field and absorption distribution in OSCs are provided. The proposed method is validated by comparing the simulated results of various structures with results obtained by the generalized transfer matrix method (GTMM) and the “equispaced thickness method” (ETM). The results demonstrate that the proposed method can reduce the number of simulations by at least half compared to the ETM while maintaining accuracy. With the proposed method, we discussed the device performance depending on the geometrical parameters of nanostructures, and the optimization and analysis are accomplished for single and tandem OSCs. After optimization based on the proposed method, the performance of OSCs are significantly improved, which further demonstrates the practicality of the method.


2021 ◽  
Vol 3 ◽  
Author(s):  
Yifu Huang ◽  
Yuqian Gu ◽  
Xiaohan Wu ◽  
Ruijing Ge ◽  
Yao-Feng Chang ◽  
...  

Resistive random-access memory (RRAM) devices have drawn increasing interest for the simplicity of its structure, low power consumption and applicability to neuromorphic computing. By combining analog computing and data storage at the device level, neuromorphic computing system has the potential to meet the demand of computing power in applications such as artificial intelligence (AI), machine learning (ML) and Internet of Things (IoT). Monolayer rhenium diselenide (ReSe2), as a two-dimensional (2D) material, has been reported to exhibit non-volatile resistive switching (NVRS) behavior in RRAM devices with sub-nanometer active layer thickness. In this paper, we demonstrate stable multiple-step RESET in ReSe2 RRAM devices by applying different levels of DC electrical bias. Pulse measurement has been conducted to study the neuromorphic characteristics. Under different height of stimuli, the ReSe2 RRAM devices have been found to switch to different resistance states, which shows the potentiation of synaptic applications. Long-term potentiation (LTP) and depression (LTD) have been demonstrated with the gradual resistance switching behaviors observed in long-term plasticity programming. A Verilog-A model is proposed based on the multiple-step resistive switching behavior. By implementing the LTP/LTD parameters, an artificial neural network (ANN) is constructed for the demonstration of handwriting classification using Modified National Institute of Standards and Technology (MNIST) dataset.


2021 ◽  
Author(s):  
Yanming Sun ◽  
Yunhao Cai ◽  
Qian Li ◽  
Guanyu Lu ◽  
Hwa Sook Ryu ◽  
...  

Abstract The development of high-performance organic solar cells (OSCs) with thick active layers is of crucial importance for the roll-to-roll printing of large-area solar panels. Unfortunately, increasing the active layer thickness usually results in a significant reduction in efficiency. Herein, we fabricated efficient thick-film OSCs with an active layer consisting of one polymer donor and two non-fullerene acceptors. The two acceptors were found to possess enlarged exciton diffusion length in the mixed phase, which is beneficial to exciton generation and dissociation. Additionally, layer by layer approach was employed to optimize the vertical phase separation. Benefiting from the synergetic effects of enlarged exciton diffusion length and graded vertical phase separation, a record high efficiency of 17.31% (certified value of 16.9%) was obtained for the 300 nm-thick OSC, with an unprecedented short-circuit current density of 28.36 mA cm−2, and a high fill factor of 73.0%. Moreover, the device with an active layer thickness of 500 nm also shows a record efficiency of 15.21%. This work provides new insights into the fabrication of high-efficiency OSCs with thick active layers.


Sign in / Sign up

Export Citation Format

Share Document