intravenous and oral administration
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 54)

H-INDEX

40
(FIVE YEARS 2)

Author(s):  
Irene Sartini ◽  
Beata Łebkowska-Wieruszewska ◽  
Anna Gajda ◽  
Konrad Pietruk ◽  
Małgorzata Gbylik-Sikorska ◽  
...  

Pain Practice ◽  
2021 ◽  
Author(s):  
Qinqin Cao ◽  
Chengjuan Fan ◽  
Ran Yuan ◽  
Hemin Dong ◽  
Shouxin Zhang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ricardo Videla ◽  
Carla Sommardahl ◽  
Joe Smith ◽  
Deanna M. W. Schaefer ◽  
Sherry Cox

This study aimed to determine the pharmacokinetics of prednisolone following intravenous and oral administration in healthy adult alpacas. Healthy adult alpacas were given prednisolone (IV, n = 4), as well as orally (PO, n = 6). Prednisolone was administered IV once (1 mg/kg). Oral administration was once daily for 5 days (2 mg/kg). Each treatment was separated by a minimum 4 month washout period. Samples were collected at 0 (pre-administration), 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 h after IV administration, and at 0 (pre-administration), 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, 24 after the first and 5th PO administration. Samples were also taken for serial complete blood count and biochemistry analysis. Prednisolone concentration was determined by high pressure liquid chromatography. Non-compartmental pharmacokinetic parameters were then determined. After IV administration clearance was 347 mL/kg/hr, elimination half-life was 2.98 h, and area under the curve was 2,940 h*ng/mL. After initial and fifth oral administration elimination half-life was 5.27 and 5.39 h; maximum concentration was 74 and 68 ng/mL; time to maximum concentration was 2.67 and 2.33 h; and area under the curve was 713 and 660 hr*ng/mL. Oral bioavailability was determined to be 13.7%. Packed cell volume, hemoglobin, and red blood cell counts were significantly decreased 5 days after the first PO administration, and serum glucose was significantly elevated 5 days after the first PO administration. In conclusion, serum concentrations of prednisolone after IV and PO administration appear to be similar to other veterinary species. Future research will be needed to determine the pharmacodynamics of prednisolone in alpacas.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5034
Author(s):  
Cindy B. McReynolds ◽  
Jun Yang ◽  
Alonso Guedes ◽  
Christophe Morisseau ◽  
Roberto Garcia ◽  
...  

There are few novel therapeutic options available for companion animals, and medications rely heavily on repurposed drugs developed for other species. Considering the diversity of species and breeds in companion animal medicine, comprehensive PK exposures in the companion animal patient is often lacking. The purpose of this paper was to assess the pharmacokinetics after oral and intravenous dosing in domesticated animal species (dogs, cats, and horses) of a novel soluble epoxide hydrolase inhibitor, EC1728, being developed for the treatment of pain in animals. Results: Intravenous and oral administration revealed that bioavailability was similar for dogs, and horses (42 and 50% F) but lower in mice and cats (34 and 8%, respectively). Additionally, clearance was similar between cats and mice, but >2× faster in cats vs. dogs and horses. Efficacy with EC1728 has been demonstrated in mice, dogs, and horses, and despite the rapid clearance of EC1728 in cats, analgesic efficacy was demonstrated in an acute pain model after intravenous but not oral dosing. Conclusion: These results demonstrate that exposures across species can vary, and investigation of therapeutic exposures in target species is needed to provide adequate care that addresses efficacy and avoids toxicity.


Author(s):  
Christoph Hethey ◽  
Niklas Hartung ◽  
Gaby Wangorsch ◽  
Karin Weisser ◽  
Wilhelm Huisinga

AbstractA sufficient quantitative understanding of aluminium (Al) toxicokinetics (TK) in man is still lacking, although highly desirable for risk assessment of Al exposure. Baseline exposure and the risk of contamination severely limit the feasibility of TK studies administering the naturally occurring isotope 27Al, both in animals and man. These limitations are absent in studies with 26Al as a tracer, but tissue data are limited to animal studies. A TK model capable of inter-species translation to make valid predictions of Al levels in humans—especially in toxicological relevant tissues like bone and brain—is urgently needed. Here, we present: (i) a curated dataset which comprises all eligible studies with single doses of 26Al tracer administered as citrate or chloride salts orally and/or intravenously to rats and humans, including ultra-long-term kinetic profiles for plasma, blood, liver, spleen, muscle, bone, brain, kidney, and urine up to 150 weeks; and (ii) the development of a physiology-based (PB) model for Al TK after intravenous and oral administration of aqueous Al citrate and Al chloride solutions in rats and humans. Based on the comprehensive curated 26Al dataset, we estimated substance-dependent parameters within a non-linear mixed-effect modelling context. The model fitted the heterogeneous 26Al data very well and was successfully validated against datasets in rats and humans. The presented PBTK model for Al, based on the most extensive and diverse dataset of Al exposure to date, constitutes a major advancement in the field, thereby paving the way towards a more quantitative risk assessment in humans.


2021 ◽  
Vol 6 ◽  
pp. 157
Author(s):  
Monica Arribas ◽  
Ian Roberts ◽  
Rizwana Chaudhri ◽  
Amber Geer ◽  
Danielle Prowse ◽  
...  

Background: Intravenous tranexamic acid (TXA) within 3 hours of birth significantly reduces death due to bleeding in women with postpartum haemorrhage (PPH). Most PPH deaths occur in the first hours after giving birth and treatment delay decreases survival.  One barrier to rapid TXA treatment is the need for intravenous injection. Intramuscular injection and oral solution of TXA would be easier and faster to administer and would require less training. However, the pharmacokinetics (PK), pharmacodynamics and safety of TXA administered by different routes in pregnant women have not been established. The main aim of this study is to ascertain whether IM and oral solution of TXA will be absorbed at levels sufficient to inhibit fibrinolysis in pregnant women. Methods: WOMAN-PharmacoTXA is a prospective, randomised, open label trial to be conducted in Zambia and Pakistan.  Adult women undergoing caesarean section with at least one risk factor for PPH will be included.  Women will be randomised to receive one of the following about 1 hour prior to caesarean section: 1-gram TXA IV, 1-gram TXA IM, 4-grams TXA oral solution or no TXA. Randomisation will continue until 120 participants with at least six post randomisation PK samples are included. TXA concentration in maternal blood samples will be measured at baseline and at different time points during 24 hours after receipt of intervention. Blood TXA concentration will be measured from the umbilical cord and neonate. The primary endpoint is maternal blood TXA concentrations over time. Secondary outcomes include umbilical cord and neonate TXA concentration D-dimer concentration, blood loss and clinical diagnosis of PPH, injection site reactions and maternal and neonate adverse events. Discussion: The WOMAN-PharmacoTXA trial will provide important data on pharmacokinetics, pharmacodynamics and safety of TXA after IV, intramuscular and oral administration in women giving birth by caesarean section. Trial registration: ClincalTrials.gov, NCT04274335 (18/02/2020).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ji-Sang Lee ◽  
Hyo-Sung Kim ◽  
Yong-Seob Jung ◽  
Hyeon-Gyeom Choi ◽  
So-Hee Kim

Fungal infections are prevalent in patients with immune diseases. Voriconazole, a triazole antifungal drug, inhibits the cytochromes CYP3A4 and CYP2C, and tofacitinib, a Janus kinase inhibitor for the treatment of rheumatoid arthritis, is metabolized by CYP3A4 and CYP2C19 in humans. Here, we investigated their interaction during simultaneous administration of both drugs to rats, either intravenously or orally. The area under the plasma concentration–time curve from time zero to time infinity (AUC) of tofacitinib was significantly greater, by 166% and 171%, respectively, and the time-averaged non-renal clearance (CLNR) of tofacitinib was significantly slower (59.5%) than that for tofacitinib alone. An in vitro metabolism study showed non-competitive inhibition of tofacitinib metabolism in the liver and intestine by voriconazole. The concentration/apparent inhibition constant (Ki) ratios of voriconazole were greater than two, indicating that the inhibition of tofacitinib metabolism could be due to the inhibition of the CYP3A1/2 and CYP2C11 enzymes by voriconazole. The pharmacokinetics of voriconazole were not affected by the co-administration of tofacitinib. In conclusion, the significantly greater AUC and slower CLNR of tofacitinib after intravenous and oral administration of both drugs were attributable to the non-competitive inhibition of tofacitinib metabolism via CYP3A1/2 and CYP2C11 by voriconazole in rats.


Sign in / Sign up

Export Citation Format

Share Document