gabaergic interneuron
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 57)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Chad R Camp ◽  
Lindsey Shapiro ◽  
Anna Vlachos ◽  
Riley E Perszyk ◽  
Nima Shariatzadeh ◽  
...  

N-methyl-D-aspartate receptors (NMDARs) are excitatory glutamate-gated ion channels that are expressed throughout the central nervous system. NMDARs mediate calcium entry into cells, and are involved in a host of neurological functions, including neuronal development and maturation. The GluN2A subunit, encoded by the GRIN2A gene, has a slightly delayed expression pattern, with low transcript levels during embryonic development that peak in the early neonatal period. Given its unique expression pattern and ability to speed up the synaptic time course after incorporation into the postsynaptic density compared to other GluN2 subunits, the GluN2A subunit is well positioned to participate in synaptic maturation and circuit refinement. By using Grin2a knockout mice, we show that the loss of GluN2A signaling impacts parvalbumin-positive GABAergic interneuron development in the hippocampal CA1 subfield. Specifically, Grin2a knockout mice have 33% more parvalbumin-positive cells in CA1 compared to wild type controls, with no impact on cholecystokinin-positive cell density. By using immunohistochemical colocalization staining and electrophysiological recordings, we demonstrate that these excess parvalbumin cells do eventually incorporate into the hippocampal network and participate in phasic inhibition, although their presynaptic release probability may be dampened. Moreover, we show that although the morphology of Grin2a knockout parvalbumin-positive cells is unaffected, key measures of intrinsic excitability and action-potential firing properties show age-dependent alterations. Preadolescent (P20-25) parvalbumin-positive cells have an increased input resistance, longer membrane time constant, longer action-potential half-width, a lower current threshold for depolarization-induced block of action-potential firing, and a decrease in peak action-potential firing rate. Each of these electrophysiological measures becomes corrected in adulthood, reaching wild type levels, suggesting a delay of electrophysiological maturation. The circuit and behavioral implications of delayed parvalbumin-positive interneuron maturation are not known; however, we find that neonatal Grin2a knockout mice are more susceptible to lipopolysaccharide and febrile-induced seizures, consistent with a critical role for early GluN2A signaling in neuronal development and maintenance of excitatory-inhibitory balance. These results could provide insights into how loss-of-function GRIN2A human variants can generate an epileptic phenotype.


2021 ◽  
Vol 22 (24) ◽  
pp. 13243
Author(s):  
Eliška Waloschková ◽  
Ana Gonzalez-Ramos ◽  
Apostolos Mikroulis ◽  
Jan Kudláček ◽  
My Andersson ◽  
...  

Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.


Author(s):  
Amanda Kiemes ◽  
Felipe V. Gomes ◽  
Diana Cash ◽  
Daniela L. Uliana ◽  
Camilla Simmons ◽  
...  

AbstractHippocampal hyperactivity driven by GABAergic interneuron deficits and NMDA receptor hypofunction is associated with the hyperdopaminergic state often observed in schizophrenia. Furthermore, previous research in the methylazoxymethanol acetate (MAM) rat model has demonstrated that repeated peripubertal diazepam administration can prevent the emergence of adult hippocampal hyperactivity, dopamine-system hyperactivity, and associated psychosis-relevant behaviors. Here, we sought to characterize hippocampal GABAA and NMDA receptors in MAM-treated rats and to elucidate the receptor mechanisms underlying the promising effects of peripubertal diazepam exposure. Quantitative receptor autoradiography was used to measure receptor density in the dorsal hippocampus CA1, ventral hippocampus CA1, and ventral subiculum. Specifically, [3H]-Ro15-4513 was used to quantify the density of α5GABAA receptors (α5GABAAR), [3H]-flumazenil to quantify α1-3;5GABAAR, and [3H]-MK801 to quantify NMDA receptors. MAM rats exhibited anxiety and schizophrenia-relevant behaviors as measured by elevated plus maze and amphetamine-induced hyperlocomotion (AIH), although diazepam only partially rescued these behaviors. α5GABAAR density was reduced in MAM-treated rats in all hippocampal sub-regions, and negatively correlated with AIH. Ventral hippocampus CA1 α5GABAAR density was positively correlated with anxiety-like behavior. Dorsal hippocampus CA1 NMDA receptor density was increased in MAM-treated rats, and positively correlated with AIH. [3H]-flumazenil revealed no significant effects. Finally, we found no significant effect of diazepam treatment on receptor densities, potentially related to the only partial rescue of schizophrenia-relevant phenotypes. Overall, our findings provide first evidence of α5GABAAR and NMDA receptor abnormalities in the MAM model, suggesting that more selective pharmacological agents may become a novel therapeutic mechanism in schizophrenia.


2021 ◽  
Author(s):  
Liad J Baruchin ◽  
Filippo Ghezzi ◽  
Michael M Kohl ◽  
Simon J B Butt

Abstract Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Siavash Fazel Darbandi ◽  
Crystal Esau ◽  
Cindy Lesage-Pelletier ◽  
Simon Monis ◽  
Luc Poitras ◽  
...  

The Dlx homeodomain transcription factors play important roles in the differentiation and migration of GABAergic interneuron precursors. The mouse and human genomes each have six Dlx genes organized into three convergently transcribed bigene clusters (Dlx1/2, Dlx3/4, and Dlx5/6) with cis-regulatory elements (CREs) located in the intergenic region of each cluster. Amongst these, the I56i and I12b enhancers from the Dlx1/2 and Dlx5/6 locus, respectively, are active in the developing forebrain. I56i is also a binding site for GTF2I, a transcription factor whose function is associated with increased sociability and Williams–Beuren syndrome. In determining the regulatory roles of these CREs on forebrain development, we have generated mutant mouse-lines where Dlx forebrain intergenic enhancers have been deleted (I56i(–/–), I12b(–/–)). Loss of Dlx intergenic enhancers impairs expression of Dlx genes as well as some of their downstream targets or associated genes including Gad2 and Evf2. The loss of the I56i enhancer resulted in a transient decrease in GABA+ cells in the developing forebrain. The intergenic enhancer mutants also demonstrate increased sociability and learning deficits in a fear conditioning test. Characterizing mice with mutated Dlx intergenic enhancers will help us to further enhance our understanding of the role of these Dlx genes in forebrain development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maja Milovanovic ◽  
Roberto Grujicic

Electroencephalography (EEG) can further out our understanding of autistic spectrum disorders (ASD) neurophysiology. Epilepsy and ASD comorbidity range between 5 and 46%, but its temporal relationship, causal mechanisms and interplay with intellectual disability are still unknown. Epileptiform discharges with or without seizures go as high as 60%, and associate with epileptic encephalopathies, conceptual term suggesting that epileptic activity can lead to cognitive and behavioral impairment beyond the underlying pathology. Seizures and ASD may be the result of similar mechanisms, such as abnormalities in GABAergic fibers or GABA receptor function. Epilepsy and ASD are caused by a number of genetic disorders and variations that induce such dysregulation. Similarly, initial epilepsy may influence synaptic plasticity and cortical connection, predisposing a growing brain to cognitive delays and behavioral abnormalities. The quantitative EEG techniques could be a useful tool in detecting and possibly measuring dysfunctions in specific brain regions and neuronal regulation in ASD. Power spectra analysis reveals a U-shaped pattern of power abnormalities, with excess power in the low and high frequency bands. These might be the consequence of a complicated network of neurochemical changes affecting the inhibitory GABAergic interneurons and their regulation of excitatory activity in pyramidal cells. EEG coherence studies of functional connectivity found general local over-connectivity and long-range under-connectivity between different brain areas. GABAergic interneuron growth and connections are presumably impaired in the prefrontal and temporal cortices in ASD, which is important for excitatory/inhibitory balance. Recent advances in quantitative EEG data analysis and well-known epilepsy ASD co-morbidity consistently indicate a role of aberrant GABAergic transmission that has consequences on neuronal organization and connectivity especially in the frontal cortex.


2021 ◽  
Vol 14 ◽  
Author(s):  
Vivek Mahadevan ◽  
Apratim Mitra ◽  
Yajun Zhang ◽  
Xiaoqing Yuan ◽  
Areg Peltekian ◽  
...  

Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel S. Miller ◽  
Kevin M. Wright

Abstract Background The development of functional neural circuits requires the precise formation of synaptic connections between diverse neuronal populations. The molecular pathways that allow GABAergic interneuron subtypes in the mammalian brain to initially recognize their postsynaptic partners remain largely unknown. The transmembrane glycoprotein Dystroglycan is localized to inhibitory synapses in pyramidal neurons, where it is required for the proper function of CCK+ interneurons. However, the precise temporal requirement for Dystroglycan during inhibitory synapse development has not been examined. Methods In this study, we use NEXCre or Camk2aCreERT2 to conditionally delete Dystroglycan from newly-born or adult pyramidal neurons, respectively. We then analyze forebrain development from postnatal day 3 through adulthood, with a particular focus on CCK+ interneurons. Results In the absence of postsynaptic Dystroglycan in developing pyramidal neurons, presynaptic CCK+ interneurons fail to elaborate their axons and largely disappear from the cortex, hippocampus, amygdala, and olfactory bulb during the first two postnatal weeks. Other interneuron subtypes are unaffected, indicating that CCK+ interneurons are unique in their requirement for postsynaptic Dystroglycan. Dystroglycan does not appear to be required in adult pyramidal neurons to maintain CCK+ interneurons. Bax deletion did not rescue CCK+ interneurons in Dystroglycan mutants during development, suggesting that they are not eliminated by canonical apoptosis. Rather, we observed increased innervation of the striatum, suggesting that the few remaining CCK+ interneurons re-directed their axons to neighboring areas where Dystroglycan expression remained intact. Conclusion Together these findings show that Dystroglycan functions as part of a synaptic partner recognition complex that is required early for CCK+ interneuron development in the forebrain.


2021 ◽  
Author(s):  
Amanda Kiemes ◽  
Felipe V Gomes ◽  
Diana Cash ◽  
Daniela L Uliana ◽  
Camilla Simmons ◽  
...  

Hippocampal hyperactivity driven by GABAergic interneuron deficits and NMDA receptor hypofunction is associated with the hyperdopaminergic state often observed in schizophrenia. Previous research in the methylazoxymethanol acetate (MAM) rat model has demonstrated that repeated peripubertal diazepam administration can prevent the emergence of adult hippocampal hyperactivity, hyperdopaminergia, and associated psychosis-relevant behaviors. Here, we sought to elucidate the mechanisms underlying these promising effects of diazepam by characterizing hippocampal GABAA and NMDA receptors in MAM-treated rats exposed to either vehicle or diazepam peripubertally. Quantitative receptor autoradiography was used to measure receptor density in dorsal hippocampus CA1, ventral hippocampus CA1, and in ventral subiculum. Specifically, [3H]-Ro15-4513 was used to quantify the density of α5 GABAA receptors (α5GABAAR), [3H]-flumazenil to quantify α1-3,5GABAAR, and [3H]-MK801 to quantify NMDA receptors. MAM rats exhibited anxiety and schizophrenia-relevant behaviors as measured by elevated plus maze and amphetamine-induced hyperlocomotion (AIH), although diazepam only partially rescued these behaviors. α5GABAAR density was reduced in MAM-treated rats in all hippocampal sub-regions, and negatively correlated with AIH. Ventral hippocampus CA1 α5GABAAR density was positively correlated with anxiety-like behavior. Dorsal hippocampus CA1 NMDA receptor density was increased in MAM-treated rats, and positively correlated with AIH. [3H]-Flumazenil revealed no significant effects. Finally, we found no significant effect of diazepam treatment on receptor densities, potentially related to the only partial rescue of schizophrenia-relevant phenotypes. Overall, our findings provide first evidence of α5GABAAR and NMDA receptor abnormalities in the MAM model, suggesting that more selective pharmacological agents may become a novel therapeutic mechanism in schizophrenia.


2021 ◽  
Author(s):  
Paulina B Lukow ◽  
Daniel Martins ◽  
Mattia Veronese ◽  
Anthony C Vernon ◽  
Philip McGuire ◽  
...  

Diverse GABAergic interneuron microcircuits orchestrate information processing in the brain. Understanding the cellular and molecular composition of these microcircuits, and whether these can be imaged by available non-invasive in vivo methods is crucial for the study of GABAergic neurotransmission in health and disease. Here, we use human gene expression data and state-of-the-art imaging transcriptomics to uncover co-expression patterns between GABAA receptor subunits and interneuron subtype-specific markers, and to decode the cellular and molecular signatures of gold-standard GABA PET radiotracers, [11C]Ro15-4513 and [11C]flumazenil. We find that the interneuron marker somatostatin is co-expressed with GABAA receptor-subunit genes GABRA5 and GABRA2, and their distribution maps onto [11C]Ro15-4513 binding in vivo. In contrast, the interneuron marker parvalbumin co-expressed with more predominant GABAA receptor subunits (GABRA1, GABRB2 and GABRG2), and their distribution tracks [11C]flumazenil binding in vivo. These results have important implications for the non-invasive study of GABAergic microcircuit dysfunction in psychiatric conditions.


Sign in / Sign up

Export Citation Format

Share Document