ground state structure
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 29)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 9 ◽  
Author(s):  
Carrington Moore ◽  
Difan Zhang ◽  
Roger Rousseau ◽  
Vassiliki-Alexandra Glezakou ◽  
Jean-Sabin McEwen

As climate change continues to pose a threat to the Earth due to the disrupted carbon cycles and fossil fuel resources remain finite, new sources of sustainable hydrocarbons must be explored. 2,3-butanediol is a potential source to produce butene because of its sustainability as a biomass-derived sugar. Butene is an attractive product because it can be used as a precursor to jet fuel, categorizing this work in the alcohol-to-jet pathway. While studies have explored the conversion of 2,3-butanediol to butene, little is understood about the fundamental reaction itself. We quantify the energetics for three pathways that were reported in the literature in the absence of a catalyst. One of these pathways forms a 1,3-butadiene intermediate, which is a highly exothermic process and thus is unlikely to occur since 2,3-butanediol likely gets thermodynamically trapped at this intermediate. We further determined the corresponding energetics of 2,3-butanediol adsorption on an ensemble of predetermined binding sites when it interacts with a defect-free stoichiometric RuO2(110) surface. Within this ensemble of adsorption sites, the most favorable site has 2,3-butanediol covering a Ru 5–coordinated cation. This approach is compared to that obtained using the global optimization algorithm as implemented in the Northwest Potential Energy Surface Search Engine. When using such a global optimization algorithm, we determined a more favorable ground-state structure that was missed during the manual adsorption site testing, with an adsorption energy of −2.61 eV as compared to −2.34 eV when using the ensemble-based approach. We hypothesize that the dehydration reaction requires a stronger chemical bond, which could necessitate the formation of oxygen vacancies. As such, this study has taken the first step toward the utilization of a global optimization algorithm for the rational design of Ru-based catalysts toward the formation of butene from sustainable resources.


Author(s):  
Austin Alexander Tomlinson ◽  
Nicola Wilkin

Abstract Phyllotaxis is a botanical classification scheme that can describe regular lattice-like structures on cylinders, often as a set of helical chains. In this letter, we study the general properties of repulsive particles on cylindrical geometries and demonstrate that this leads to a model which allows one to predict the minimum energy configuration for any given combination of system parameters. We are able to predict a sequence of transitions between phyllotactic ground states at zero temperature. Our results are understood in terms of a newly identified global scale invariant, \(\alpha\), dependent on circumference and density, which \emph{alone} determines the ground state structure. This representation provides a framework within which to understand and create lattice structures on more complex curved surfaces, which occur in both biological and nanoscale experimental settings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yifeng Xiao ◽  
Shi He ◽  
Mo Li ◽  
Weiguo Sun ◽  
Zhichao Wu ◽  
...  

Abstract$$\hbox {MoSe}_2$$ MoSe 2 is a layered transition-metal dichalcogenide (TMD) with outstanding electronic and optical properties, which is widely used in field-effect transistor (FET). Here the structural evolution and phase transition of $$\hbox {MoSe}_2$$ MoSe 2 under high pressure are systematically studied by CALYPSO structural search method and first-principles calculations. The structural evolutions of $$\hbox {MoSe}_2$$ MoSe 2 show that the ground state structure under ambient pressure is the experimentally observed P6$$_3$$ 3 /mmc phase, which transfers to R3m phase at 1.9 GPa. The trigonal R3m phase of $$\hbox {MoSe}_2$$ MoSe 2 is stable up to 72.1 GPa, then, it transforms into a new P6$$_3$$ 3 /mmc phase with different atomic coordinates of Se atoms. This phase is extremely robust under ultrahigh pressure and finally changes to another trigonal R-3m phase under 491.1 GPa. The elastic constants and phonon dispersion curves indicate that the ambient pressure phase and three new high-pressure phases are all stable. The electronic band structure and projected density of states analyses reveal a pressure induced semiconducting to metallic transition under 72.1 GPa. These results offer a detailed structural evolution and phase diagram of $$\hbox {MoSe}_2$$ MoSe 2 under high pressure, which may also provide insights for exploration other TMDs under ultrahigh pressure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guang-Ping Chen ◽  
Pu Tu ◽  
Chang-Bing Qiao ◽  
Jin-Xia Zhu ◽  
Qi Jia ◽  
...  

We consider a harmonically trapped rotating spin-1 Bose–Einstein condensate with SU(3) spin–orbit coupling subject to a gradient magnetic field. The effects of SU(3) spin–orbit coupling, rotation, and gradient magnetic field on the ground-state structure of the system are investigated in detail. Our results show that the interplay among SU(3) spin–orbit coupling, rotation, and gradient magnetic field can result in a variety of ground states, such as a vortex ring and clover-type structure. The numerical results agree well with our variational analysis results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhongxin Chen ◽  
Wenqiang Li ◽  
Md Abdus Sabuj ◽  
Yuan Li ◽  
Weiya Zhu ◽  
...  

AbstractMost organic semiconductors have closed-shell electronic structures, however, studies have revealed open-shell character emanating from design paradigms such as narrowing the bandgap and controlling the quinoidal-aromatic resonance of the π-system. A fundamental challenge is understanding and identifying the molecular and electronic basis for the transition from a closed- to open-shell electronic structure and connecting the physicochemical properties with (opto)electronic functionality. Here, we report donor-acceptor organic semiconductors comprised of diketopyrrolopyrrole and naphthobisthiadiazole acceptors and various electron-rich donors commonly utilized in constructing high-performance organic semiconductors. Nuclear magnetic resonance, electron spin resonance, magnetic susceptibility measurements, single-crystal X-ray studies, and computational investigations connect the bandgap, π-extension, structural, and electronic features with the emergence of various degrees of diradical character. This work systematically demonstrates the widespread diradical character in the classical donor-acceptor organic semiconductors and provides distinctive insights into their ground state structure-property relationship.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 343
Author(s):  
J. Ruiz-González ◽  
G. H. Cocoletzi ◽  
L. Morales de la Garza

Phase transitions in aluminum nitride (AlN) were investigated by first principles total energy calculations. Three AlN crystal structures were considered: rock salt (NaCl), zinc blende and wurtzite. The cohesion energy was calculated within both GGA and LDA formalisms. According to the cohesion energy results, the ground state corresponds to the hexagonal wurtzite phase, in agreement with experimental evidence. However, the zinc blende and NaCl phases may be formed as metastable structures. To determine the energy gap the modified Becke-Johnson pseudopotential was applied, with results showing good agreement with the experimental data. The ground state structure exhibits direct electronic transitions. However, the zinc blende and NaCl phases show indirect band gap. Provided that external pressures may induce transitions from wurtzite to zinc blende or rock salt, these transitions were also investigated. Estimation of the pressure at the phase transition indicates that small pressures are needed to achieve such transitions.


2021 ◽  
pp. 1353868
Author(s):  
M. Djelloul ◽  
H. Bouderba ◽  
R. Beddiaf ◽  
B. Bentria ◽  
B. Helifa

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 897
Author(s):  
Estelina Lora da Silva ◽  
Adeleh Mokhles Gerami ◽  
P. Neenu Lekshmi ◽  
Michel L. Marcondes ◽  
Lucy V. C. Assali ◽  
...  

We present an ab-initio study performed in the framework of density functional theory, group-subgroup symmetry analysis and lattice dynamics, to probe the octahedral distortions, which occur during the structural phase transitions of the quasi-2D layered perovskite Sr3Hf2O7 compound. Such a system is characterized by a high-temperature I4/mmm centrosymmetric structure and a ground-state Cmc21 ferroelectric phase. We have probed potential candidate polymorphs that may form the I4/mmm → Cmc21 transition pathways, namely Fmm2, Ccce, Cmca and Cmcm. We found that the band gap widths increase as the symmetry decreases, with the ground-state structure presenting the largest gap width (∼5.95 eV). By probing the Partial Density of States, we observe a direct relation regarding the tilts and rotations of the oxygen perovskite cages as the transition occurs; these show large variations mostly of the O p-states which contribute mostly to the valence band maximum. Moreover, by analyzing the hyperfine parameters, namely the Electric Field Gradients and asymmetric parameters, we observe variations as the transition occurs, from which it is possible to identify the most plausible intermediate phases. We have also computed the macroscopic polarization and confirm that the Cmc21 phase is ferroelectric with a value of spontaneous polarization of 0.0478 C/m2. The ferroelectricity of the ground-state Cmc21 system arises due to a second order parameter related to the coupling of the rotation and tilts of the O perovskite cages together with the Sr displacements.


2020 ◽  
Vol 75 (12) ◽  
pp. 1063-1075
Author(s):  
Mark P. Hertzberg ◽  
Mudit Jain

AbstractIn order to elucidate the quantum ground state structure of nonrelativistic condensates, we explicitly construct the ground state wave function for multiple species of bosons, describing either superconductivity or superfluidity. Since each field Ψj carries a phase θj and the Lagrangian is invariant under rotations θj → θj + αj for independent αj, one can investigate the corresponding wave function overlap between a pair of ground states $\langle G\vert {G}^{\prime }\rangle $ differing by these phases. We operate in the infinite volume limit and use a particular prescription to define these states by utilizing the position space kernel and regulating the UV modes. We show that this overlap vanishes for most pairs of rotations, including θj → θj + mj ϵ, where mj is the mass of each species, while it is unchanged under the transformation θj → θj + qj ϵ, where qj is the charge of each species. We explain that this is consistent with the distinction between a superfluid, in which there is a nontrivial conserved number, and the superconductor, in which the electric field and conserved charge is screened, while it is compatible with a nonzero order parameter in both cases. Moreover, we find that this bulk ground state wave function overlap directly reflects the Goldstone boson structure of the effective theory and provides a useful diagnostic of its physical phase.


Sign in / Sign up

Export Citation Format

Share Document