phenolic antioxidants
Recently Published Documents


TOTAL DOCUMENTS

906
(FIVE YEARS 184)

H-INDEX

77
(FIVE YEARS 9)

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Javad Sharifi-Rad ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Muhammad Akram ◽  
Wafa Abbaass ◽  
...  

Medicinal plants are being used worldwide for centuries for their beneficial properties. Some of the most popular medicinal plants belong to the Melissa genus, and different health beneficial effects have already been identified for this genus. Among these species, in particular, the Melissa officinalis L. has been reported as having many biological activities, such as antioxidant, antimicrobial, antitumour, antiviral, antiallergic, anti-inflammatory, and also flatulence inhibiting effects. The beneficial properties of the Melissa officinalis, also known as “lemon balm herb”, can be related to the bioactive compounds such as terpenoids, alcohols, rosmarinic acid, and phenolic antioxidants which are present in the plant. In this updated review, the botanical, geographical, nutritional, phytochemical, and traditional medical aspects of M. officinalis have been considered as well as in vitro and in vivo and clinically proven therapeutic properties have been reviewed with a special focus on health-promoting effects and possible perspective nutraceutical applications. To evidence the relevance of this plant in the research and completely assess the context, a literature quantitative research analysis has been performed indicating the great interest towards this plant for its beneficial properties.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 288
Author(s):  
Guzel Ziyatdinova ◽  
Anastasiya Zhupanova ◽  
Rustam Davletshin

Natural phenolic antioxidants are one of the widely studied compounds in life sciences due to their important role in oxidative stress prevention and repair. The structural similarity of these antioxidants and their simultaneous presence in the plant samples stipulate the development of methods for their quantification. The current work deals with the simultaneous determination of vanillin and its bioprecursor ferulic acid using a voltammetric sensor for the first time. A sensor based on the layer-by-layer deposition of the polyaminobenzene sulfonic acid functionalized single-walled carbon nanotubes (f-SWCNTs) and electropolymerized bromocresol purple has been developed for this purpose. The best response of co-existing target analytes was registered for the polymer obtained from the 25 µM dye by 10-fold potential cycling from 0.0 to 1.2 V with the scan rate of 100 mV s−1 in 0.1 M phosphate buffer (PB), pH 7.0. Scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy (EIS) confirmed the effectivity of the sensor developed. The linear dynamic ranges of 0.10–5.0 µM and 5.0–25 µM for both analytes with the detection limits of 72 nM and 64 nM for ferulic acid and vanillin, respectively, were achieved in differential pulse mode. The sensor was applied for the analysis of vanilla extracts.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 189
Author(s):  
Brandon Aguiar ◽  
Helena Carmo ◽  
Jorge Garrido ◽  
José M. Sousa Lobo ◽  
Isabel F. Almeida

Polyphenols are a large family of natural compounds widely used in cosmetic products due to their antioxidant and anti-inflammatory beneficial properties and their ability to prevent UV radiation-induced oxidative stress. Since these compounds present chromophores and are applied directly to the skin, they can react with sunlight and exert phototoxic effects. The available scientific information on the phototoxic potential of these natural compounds is scarce, and thus the aim of this study was to evaluate the photoreactivity and phototoxicity of five phenolic antioxidants with documented use in cosmetic products. A standard ROS assay was validated and applied to screen the photoreactivity of the natural phenolic antioxidants caffeic acid, ferulic acid, p-coumaric acid, 3,4-dihydroxyphenylacetic acid (DOPAC), and rutin. The phototoxicity potential was determined by using a human keratinocyte cell line (HaCaT), based on the 3T3 Neutral Red Uptake phototoxicity test. Although all studied phenolic antioxidants absorbed UV/Vis radiation in the range of 290 to 700 nm, only DOPAC was able to generate singlet oxygen. The generation of reactive oxygen species is an early-stage chemical reaction as part of the phototoxicity mechanism. Yet, none of the studied compounds decreased the viability of keratinocytes after irradiation, leading to the conclusion that they do not have phototoxic potential. The data obtained with this work suggests that these compounds are safe when incorporated in cosmetic products.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8385
Author(s):  
Guzel Ziyatdinova ◽  
Ekaterina Guss ◽  
Elvira Yakupova

The design and fabrication of novel electrochemical sensors with high analytical and operational characteristics are one of the sustainable trends in modern analytical chemistry. Polymeric film formation by the electropolymerization of suitable monomers is one of the methods of sensors fabrication. Among a wide range of the substances able to polymerize, the phenolic ones are of theoretical and practical interest. The attention is focused on the sensors based on the electropolymerized natural phenolic antioxidants and their analytical application. The typical electropolymerization reaction schemes are discussed. Phenol electropolymerization leads to insulating coverage formation. Therefore, a combination of electropolymerized natural phenolic antioxidants and carbon nanomaterials as modifiers is of special interest. Carbon nanomaterials provide conductivity and a high working surface area of the electrode, while the polymeric film properties affect the selectivity and sensitivity of the sensor response for the target analyte or the group of structurally related compounds. The possibility of guided changes in the electrochemical response for the improvement of target compounds’ analytical characteristics has appeared. The analytical capabilities of sensors based on electropolymerized natural phenolic antioxidants and their future development in this field are discussed.


Author(s):  
Rosario Pardo-Botello ◽  
Fátima Chamizo-Calero ◽  
Olga Monago-Maraña ◽  
Raquel Rodríguez-Corchado ◽  
Rosa de la Torre-Carreras ◽  
...  

AbstractThe hydrophilic and lipophilic antioxidant activities due to the main bioactive components present in Spanish tomato paste samples were studied, using standardized and fluorescent methods. After extraction, phenolic antioxidants (Folin-Ciocalteu method) and total antioxidant activity (TEAC assay) were evaluated, examining differences between hydrophilic and lipophilic extracts corresponding to different samples. Total fluorescence spectra of extracts (excitation-emission matrices, EEMs) were recorded in the front-face mode at two different ranges: 210–300 nm/310–390 nm, and 295–350 nm/380–480 nm, for excitation and emission, respectively, in the hydrophilic extracts. In the lipophilic extracts, the first range was 230–283 nm/290–340 nm, while the second range was 315–383 nm/390–500 nm for excitation and emission, respectively. EEMs from a set of 22 samples were analyzed by the second-order multivariate technique Parallel Factor Analysis (PARAFAC). Tentative assignation of the different components to the various fluorophores of tomato was tried, based on literature. Correlation between the antioxidant activity and score values retrieved for different components in PARAFAC model was obtained. The possibility of using EEMs-PARAFAC to evaluate antioxidant activity of hydrophilic and lipophilic compounds in these samples was examined, obtaining good results in accordance with the Folin-Ciocalteu and TEAC assays.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2857
Author(s):  
Wenfei Tian ◽  
Jingyang Tong ◽  
Xiaoyue Zhu ◽  
Philipp Fritschi Martin ◽  
Yonghui Li ◽  
...  

The health benefits from consumption of whole wheat products are widely recognized. This study investigated the effects of different pilot-scale milling methods on physicochemical properties, bioactive components, Chinese steamed bread (CSB), and Chinese leavened pancakes (CLP) qualities of whole wheat flour (WWF). The results indicated that WWF-1 from the reconstitution of brans processed by a hammer mill had the best CSB and CLP quality overall. WWF from entire grain grinding by a jet mill (65 Hz) contained the highest concentration of bioactive components including dietary fibers (DF) and phenolic acids. A finer particle size did not necessarily result in a higher content of phenolic antioxidants in WWF. DF contents and damaged starch were negatively correlated with CSB and CLP quality. Compromised reduced quality observed in CLP made from WWF indicated its potentially higher acceptance as a whole-grain product.


Sign in / Sign up

Export Citation Format

Share Document