frobenius norm
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 62)

H-INDEX

16
(FIVE YEARS 2)

Geophysics ◽  
2022 ◽  
pp. 1-85
Author(s):  
Peng Lin ◽  
Suping Peng ◽  
Xiaoqin Cui ◽  
Wenfeng Du ◽  
Chuangjian Li

Seismic diffractions encoding subsurface small-scale geologic structures have great potential for high-resolution imaging of subwavelength information. Diffraction separation from the dominant reflected wavefields still plays a vital role because of the weak energy characteristics of the diffractions. Traditional rank-reduction methods based on the low-rank assumption of reflection events have been commonly used for diffraction separation. However, these methods using truncated singular-value decomposition (TSVD) suffer from the problem of reflection-rank selection by singular-value spectrum analysis, especially for complicated seismic data. In addition, the separation problem for the tangent wavefields of reflections and diffractions is challenging. To alleviate these limitations, we propose an effective diffraction separation strategy using an improved optimal rank-reduction method to remove the dependence on the reflection rank and improve the quality of separation results. The improved rank-reduction method adaptively determines the optimal singular values from the input signals by directly solving an optimization problem that minimizes the Frobenius-norm difference between the estimated and exact reflections instead of the TSVD operation. This improved method can effectively overcome the problem of reflection-rank estimation in the global and local rank-reduction methods and adjusts to the diversity and complexity of seismic data. The adaptive data-driven algorithms show good performance in terms of the trade-off between high-quality diffraction separation and reflection suppression for the optimal rank-reduction operation. Applications of the proposed strategy to synthetic and field examples demonstrate the superiority of diffraction separation in detecting and revealing subsurface small-scale geologic discontinuities and inhomogeneities.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 304
Author(s):  
Xianglong Chen ◽  
Haipeng Wang ◽  
Yaohui Liang ◽  
Ying Meng ◽  
Shifeng Wang

The presence of fake pictures affects the reliability of visible face images under specific circumstances. This paper presents a novel adversarial neural network designed named as the FTSGAN for infrared and visible image fusion and we utilize FTSGAN model to fuse the face image features of infrared and visible image to improve the effect of face recognition. In FTSGAN model design, the Frobenius norm (F), total variation norm (TV), and structural similarity index measure (SSIM) are employed. The F and TV are used to limit the gray level and the gradient of the image, while the SSIM is used to limit the image structure. The FTSGAN fuses infrared and visible face images that contains bio-information for heterogeneous face recognition tasks. Experiments based on the FTSGAN using hundreds of face images demonstrate its excellent performance. The principal component analysis (PCA) and linear discrimination analysis (LDA) are involved in face recognition. The face recognition performance after fusion improved by 1.9% compared to that before fusion, and the final face recognition rate was 94.4%. This proposed method has better quality, faster rate, and is more robust than the methods that only use visible images for face recognition.


Author(s):  
Priyanka Mukhopadhyay

Abstract Many quantum algorithms can be written as a composition of unitaries, some of which can be exactly synthesized by a universal fault-tolerant gate set like Clifford+T, while others can be approximately synthesized. A quantum compiler synthesizes each approximately synthesizable unitary up to some approximation error, such that the error of the overall unitary remains bounded by a certain amount. In this paper we consider the case when the errors are measured in the global phase invariant distance. Apart from deriving a relation between this distance and the Frobenius norm, we show that this distance composes. If a unitary is written as a composition (product and tensor product) of other unitaries, we derive bounds on the error of the overall unitary as a function of the errors of the composed unitaries. Our bound is better than the sum-of-error bound, derived by Bernstein- Vazirani(1997), for the operator norm. This builds the intuition that working with the global phase invariant distance might give us a lower resource count while synthesizing quantum circuits. Next we consider the following problem. Suppose we are given a decomposition of a unitary, that is, the unitary is expressed as a composition of other unitaries. We want to distribute the errors in each component such that the resource-count (specifically T-count) is optimized. We consider the specific case when the unitary can be decomposed such that the $R_z(\theta)$ gates are the only approximately synthesizable component. We prove analytically that for both the operator norm and global phase invariant distance, the error should be distributed equally among these components(given some approximations) . The optimal number of T-gates obtained by using the global phase invariant distance is less. Furthermore, for approx-QFT the error due to pruning of rotation gates is less when measured in this distance.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2667
Author(s):  
Xiaodong Yu ◽  
Rui Ding ◽  
Jingbo Shao ◽  
Xiaohui Li

Due to the high dimensionality and high data redundancy of hyperspectral remote sensing images, it is difficult to maintain the nonlinear structural relationship in the dimensionality reduction representation of hyperspectral data. In this paper, a feature representation method based on high order contractive auto-encoder with nuclear norm constraint (CAE-HNC) is proposed. By introducing Jacobian matrix in the CAE of the nuclear norm constraint, the nuclear norm has better sparsity than the Frobenius norm and can better describe the local low dimension of the data manifold. At the same time, a second-order penalty term is added, which is the Frobenius norm of the Hessian matrix expressed in the hidden layer of the input, encouraging a smoother low-dimensional manifold geometry of the data. The experiment of hyperspectral remote sensing image shows that CAE-HNC proposed in this paper is a compact and robust feature representation method, which provides effective help for the ground object classification and target recognition of hyperspectral remote sensing image.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 44
Author(s):  
Dániel Szabó ◽  
Emese Gincsainé Szádeczky-Kardoss

This paper presents an identification method for robotic manipulators. It demonstrates how a dynamic model can be constructed with the help of the modified Newton–Euler formula. To model the friction of the joints, static friction modelling is used, in which the friction behaviour depends only on the actual velocity of the given joint. With these techniques, the model can be converted into a linear-in-parameters form, which can make the identification process easier. Two estimators are introduced to solve the identification problem, the least-squares and the weighted least-squares estimators, and the determination of the independently identifiable parameter vector to make the regression matrix maximal column rank is presented. The Frobenius norm is used as the condition of the regression matrix to optimise the excitation trajectories, and the form of the trajectories has been selected from the finite Fourier series. The method is tested in a simulated environment to achieve a three-degrees-of-freedom manipulator.


2021 ◽  
Vol 11 (17) ◽  
pp. 7804
Author(s):  
Shengchao Jian ◽  
Xiangang Peng ◽  
Haoliang Yuan ◽  
Chun Sing Lai ◽  
Loi Lei Lai

Fault-cause identification plays a significant role in transmission line maintenance and fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and geographic information, multiview learning can be used to realize the information fusion for better fault-cause identification. To reduce the redundant information of different types of monitoring data, in this paper, a hierarchical multiview feature selection (HMVFS) method is proposed to address the challenge of combining waveform and contextual fault features. To enhance the discriminant ability of the model, an ε-dragging technique is introduced to enlarge the boundary between different classes. To effectively select the useful feature subset, two regularization terms, namely l2,1-norm and Frobenius norm penalty, are adopted to conduct the hierarchical feature selection for multiview data. Subsequently, an iterative optimization algorithm is developed to solve our proposed method, and its convergence is theoretically proven. Waveform and contextual features are extracted from yield data and used to evaluate the proposed HMVFS. The experimental results demonstrate the effectiveness of the combined used of fault features and reveal the superior performance and application potential of HMVFS.


Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 54
Author(s):  
Milca de Freitas Coelho ◽  
Kouamana Bousson ◽  
Kawser Ahmed

Nonlinear state estimation problem is an important and complex topic, especially for real-time applications with a highly nonlinear environment. This scenario concerns most aerospace applications, including satellite trajectories, whose high standards demand methods with matching performances. A very well-known framework to deal with state estimation is the Kalman Filters algorithms, whose success in engineering applications is mostly due to the Extended Kalman Filter (EKF). Despite its popularity, the EKF presents several limitations, such as exhibiting poor convergence, erratic behaviors or even inadequate linearization when applied to highly nonlinear systems. To address those limitations, this paper suggests an improved Extended Kalman Filter (iEKF), where a new Jacobian matrix expansion point is recommended and a Frobenius norm of the cross-covariance matrix is suggested as a correction factor for the a priori estimates. The core idea is to maintain the EKF structure and simplicity but improve its accuracy. In this paper, two case studies are presented to endorse the proposed iEKF. In both case studies, the classic EKF and iEKF are implemented, and the obtained results are compared to show the performance improvement of the state estimation by the iEKF.


Author(s):  
Vanni Noferini ◽  
Federico Poloni

AbstractWe study the problem of finding the nearest $$\varOmega $$ Ω -stable matrix to a certain matrix A, i.e., the nearest matrix with all its eigenvalues in a prescribed closed set $$\varOmega $$ Ω . Distances are measured in the Frobenius norm. An important special case is finding the nearest Hurwitz or Schur stable matrix, which has applications in systems theory. We describe a reformulation of the task as an optimization problem on the Riemannian manifold of orthogonal (or unitary) matrices. The problem can then be solved using standard methods from the theory of Riemannian optimization. The resulting algorithm is remarkably fast on small-scale and medium-scale matrices, and returns directly a Schur factorization of the minimizer, sidestepping the numerical difficulties associated with eigenvalues with high multiplicity.


Sign in / Sign up

Export Citation Format

Share Document