cell structures
Recently Published Documents


TOTAL DOCUMENTS

1059
(FIVE YEARS 221)

H-INDEX

52
(FIVE YEARS 8)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 131
Author(s):  
Nicholas J. Ginga ◽  
Raleigh Slyman ◽  
Ge-Ah Kim ◽  
Eric Parigoris ◽  
Sha Huang ◽  
...  

Intestinal organoids are 3D cell structures that replicate some aspects of organ function and are organized with a polarized epithelium facing a central lumen. To enable more applications, new technologies are needed to access the luminal cavity and apical cell surface of organoids. We developed a perfusion system utilizing a double-barrel glass capillary with a pressure-based pump to access and modify the luminal contents of a human intestinal organoid for extended periods of time while applying cyclic cellular strain. Cyclic injection and withdrawal of fluorescent FITC-Dextran coupled with real-time measurement of fluorescence intensity showed discrete changes of intensity correlating with perfusion cycles. The perfusion system was also used to modify the lumen of organoids injected with GFP-expressing E. coli. Due to the low concentration and fluorescence of the E. coli, a novel imaging analysis method utilizing bacteria enumeration and image flattening was developed to monitor E. coli within the organoid. Collectively, this work shows that a double-barrel perfusion system provides constant luminal access and allows regulation of luminal contents and luminal mixing.


Mechanik ◽  
2022 ◽  
Vol 95 (1) ◽  
pp. 12-14
Author(s):  
Mateusz Rudnik

The article presents the results of compressive strength tests of cylindrical samples with a hexagonal cell structure. The samples were made of MED 610 material using the photo-curing technology liquid polymer resins. The compressive strength was estimated on the basis of a static compression test of the printed elements. It has been shown that the PolyJet Matrix 3D printing technology enables the printing models with a thin-walled cell structure, which, while maintaining the appropriate strength properties, can be used in the design and production of certain utility models.


2022 ◽  
pp. 400-426
Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


2022 ◽  
Vol 170 ◽  
pp. 108588
Author(s):  
Jun Xiong ◽  
Yong Zhang ◽  
Liang Su ◽  
Feng Zhang ◽  
Changfeng Wu

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Enikő Mester ◽  
Dániel Pecsmány ◽  
Károly Jálics ◽  
Ádám Filep ◽  
Miklós Varga ◽  
...  

Polyurethane flexible foams are widely used for a variety of applications to improve comfort and durability. Their long-term frequent use inevitably leads to the generation of waste that needs to be treated. The recycling and reuse of polyurethane waste are essential to achieve an environmentally friendly economy. The present study investigates the potential to reuse and repurpose flexible polyurethane foam from automotive seat cushion waste materials. Flexible foams were prepared with different hardnesses using isocyanate–polyol ratios between 0.8 and 1.2 NCO-index. Dry heat aging tests were performed to mimic the long-term usage of the materials. The decrease in compressive strength was compared with the change in acoustic damping properties before and after the aging tests using an acoustic tube, and the change in foam cell structures was also analyzed by micro-CT. On the basis of the results obtained, although the foam systems are no longer suitable to be used as seat cushions due to aging, they can still be used as sound insulation materials within a given frequency range, as their sound absorption capacity is suitable for such purpose.


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Kaiwang Chen ◽  
Penglin Zhang ◽  
Pengfei Sun ◽  
Xianming Niu ◽  
Chunlian Hu

To effectively improve the properties of a mullite coating and its interfacial bonding with the substrate, a Ni–P layer is deposited on the surface of mullite powders by electroless plating. The original mullite powders and coated mullite powders are then deposited onto stainless-steel substrates by plasma spraying. The growth mechanism of the Ni–P layer during the plating, the microstructures of the coated powders and mullite coating and the properties of the mullite coatings are characterized and analyzed. The results indicate that the Ni–P layer on the surface of the mullite powder has cell structures with a dense uniform distribution and grows in layers on the surface of the mullite powder. The crystallization behavior of Ni-P amorphous layer is induced by heat treatment. Compared to the original mullite coating, the coating prepared by the coated mullite powders has better manufacturability, stronger adhesion to the substrate, lower porosity (7.40%, 65% of that of the original coating), higher hardness (500.1 HV, 1.2 times that of the original coating), and better thermal cycle resistance (two times that of the original coating). The method of preparation of high-temperature thermal barrier coatings with coated mullite powders has a high application value.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8452
Author(s):  
Stylianos D. Assimonis ◽  
Sandhya Chandravanshi ◽  
Okan Yurduseven ◽  
Dmitry Zelenchuk ◽  
Oleksandr Malyuskin ◽  
...  

In this paper, we present the application of a resonant electric based metamaterial element and its two-dimensional metasurface implementation for a variety of emerging wireless applications. Metasurface apertures developed in this work are synthesized using sub-wavelength sampled resonant electric-based unit-cell structures and can achieve electromagnetic wave manipulation at microwave frequencies. The presented surfaces are implemented in a variety of forms, from absorption surfaces for energy harvesting and wireless power transfer to wave-chaotic surfaces for compressive sensing based single-pixel direction of arrival estimation and reflecting surfaces. It is shown that the resonant electric-synthesized metasurface concept offers a significant potential for these applications with high fidelity absorption, transmission and reflection characteristics within the microwave frequency spectrum.


2021 ◽  
Author(s):  
Qiang Sun ◽  
Zhengrong Zhang ◽  
You Zheng ◽  
Zubiao Niu ◽  
Bo Zhang ◽  
...  

Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (approximately 45.1 nm/sec) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.


2021 ◽  
Vol 205 ◽  
pp. 114190
Author(s):  
Luqing Cui ◽  
Fuqing Jiang ◽  
Dunyong Deng ◽  
Tongzheng Xin ◽  
Xiaoyu Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document