seismic exploration
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 272)

H-INDEX

31
(FIVE YEARS 4)

Geophysics ◽  
2022 ◽  
pp. 1-60
Author(s):  
Qian Xu ◽  
Zhong-Qi Wang ◽  
Wengong Han ◽  
Chenglong Yu

The amplitude-frequency characteristic of a seismic wave excited by explosion sources directly affects the accuracy of seismic exploration. To reveal the effect law related to a cylindrical charge, the research proposes a seismic wavefield model excited by a long cylindrical charge. According to the characteristics of the blasting cavity generated by a finite length cylindrical charge, the seismic wavefield characteristics of a cylindrical charge excitation is obtained by superposing the seismic wavefield excited by a series of spherical charges. Numerical simulation results show that the calculation error of the blasting cavity characteristics of the theoretical model is within 10%. The comparison with field experimental results shows that the error of the model is within 9.4%. The velocity field of the excited seismic wave is almost the same as that of the spherical charge when the explosion distance to the cylindrical charge with finite length is 16-21 times longer than the charge length, but the frequency of the seismic wave is 30% higher than for a spherical charge. Moreover, the explosive velocity has a certain influence on the amplitude-frequency characteristic of the seismic wave excited by the cylindrical charge. The established theoretical model can accurately describe the amplitude-frequency characteristics of the seismic wavefield excited by a cylindrical charge with finite length.


2022 ◽  
Vol 40 (2) ◽  
pp. 619-628
Author(s):  
Mustafa Youldash ◽  
Saleh Al-Dossary ◽  
Lama AlDaej ◽  
Farah AlOtaibi ◽  
Asma AlDubaikil ◽  
...  

2022 ◽  
Vol 41 (1) ◽  
pp. 19-26
Author(s):  
Patrick Charron ◽  
Erwan L'Arvor ◽  
Jens Fasterling ◽  
Guillaume Richard

TotalEnergies SE and partners Shell and PetroSA recently completed the acquisition and processing of a large (10,000 km2) ultra-sparse (200 m between streamers) marine seismic acquisition survey off the west coast of South Africa in block 5/6/7 using a large PGS Titan Class Ramform vessel. The sparse design enabled fast acquisition and low survey cost and health, safety, and environment exposure. Advances in sparse processing enabled high-quality final seismic data consistent with the exploration objectives. In addition, DUG optimized the 4D regularization/interpolation parameters to approach the near offsets differently than the offsets with more complete coverage to help several processing steps. The survey was designed to be upgradable to a higher-resolution survey if needed via the addition of a custom regular infill pattern, either in its entirety or over targeted areas.


Resources ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Oleg Prischepa ◽  
Yury Nefedov ◽  
Victoria Nikiforova

The Timan–Pechora oil and gas province (TPP), despite the good geological and geophysical knowledge of its central and southern regions, remains poorly studied in the extreme northwestern part within the north of the Izhma–Pechora depression and the Malozemelsk–Kolguev monocline, and in the extreme northeast within the Predpaikhoisky depression. Assessing the oil and gas potential of the Lower Paleozoic part of the section is urgently required in the northwestern part of the TPP, the productivity of which has been proven at the border and in the more eastern regions of the province (Pechora–Kolva, Khoreyverskaya, Varandei–Adzva regions), that have been evaluated ambiguously. A comprehensive interpretation of the seismic exploration of regional works was carried out, with the wells significantly clarifying the structural basis and the boundaries of the distribution of the main seismic facies’ complexes. The capabilities of potentially oil- and gas-producing strata in the Silurian–Lower Devonian were studied. An analysis of migration routes in transit strata used for basin modeling in order to reconstruct the conditions of oil and gas formation that are common in the land and water areas of the Arctic zone of the TPP was carried out. Modeling allowed us to reach an understanding of the formation of large zones with possible accumulations of hydrocarbons, including the time at which the formation occurred and under what conditions, to establish space–time links with possible centers of generation to identify migration directions and, based on a comparison with periods of intensive generation of hydrocarbons both directly located within the work area and beyond (noting the possible migration), to identify zones of the paleoaccumulation of hydrocarbons. The body of existing literature on the subject made it possible to outline promising oil and gas accumulation zones, with the allocation of target objects for further exploration in the Lower Paleozoic part of the section.


2021 ◽  
pp. 13-22
Author(s):  
R. M. Bembel ◽  
S. R. Bembel ◽  
M. I. Zaboeva ◽  
E. E. Levitina

Based on the well-known results of studies of the ether-geosoliton concept of the growing Earth, the article presents the conclusions that made it possible to propose a model of thermonuclear synthesis of chemical elements that form renewable reserves of developed oil and gas fields. It was revealed that local zones of abnormally high production rates of production wells and, accordingly, large cumulative production at developed fields in Western Siberia are due to the restoration of recoverable reserves due to geosoliton degassing. Therefore, when interpreting the results of geological and geophysical studies, it is necessary to pay attention to the identified geosoliton degassing channels, since in the works of R. M. Bembel and others found that they contributed to the formation of a number of hydrocarbon deposits in Western Siberia. When interpreting the results of geological-geophysical and physicochemical studies of the fields being developed, it is recommended to study the data of the ring high-resolution seismic exploration technology in order to identify unique areas of renewable reserves, which can significantly increase the component yield of hydrocarbon deposits.


2021 ◽  
Vol 6 (4) ◽  
pp. 12-21
Author(s):  
Olga S. Generalenko ◽  
Anastasia Y. Koltsun ◽  
Svetlana I. Isaeva ◽  
Sergey L. Tarasov ◽  
Vladimir A. Orlov

Introduction. The subject of the study of this work is the deposits of the anomalous section of the Bazhenov formation (ASB) of Western Siberia, the disturbed occurrence of which was recorded by 2D, 3D seismic exploration and borehole data at many fields of the Frolov oil and gas region. The research area unites the company’s assets in the KhMAO and the Tyumen region, which are part of the large hydrocarbon cluster “ZIMA”. Aim. In order to typify various complexes of rocks of the Bazhenov formation and further localization of deposits, a comprehensive core analysis, GIS and seismic studies were performed. Materials and methods. According to the results of lithological study of the core and petrophysical interpretation of logging diagrams, have been identified various types of rocks in the interval of the Bazhenov formation. According to the results of the interpretation of the seismic survey materials, contoured zones that differ in the wave pattern by different coherence of the axes of common phase. The revealed differences in seismic sections compared with borehole data and geological bodies mapped based on the obtained patterns. Results. Based on a comprehensive interpretation of the core, GIS and seismic studies, established the zonality of the distribution of various types of deposits of the Bazhenov formation, the relationship of the development of ASB zones with the introduction of Early Cretaceous sedimentary bodies and showed the introduction of detrital material from the overlying rocks. Conclusions. The authors of the article conclude that the development of anomalous sections of the Bazhenov formation involves several stages of the introduction of landslide bodies of overlying rocks, according to the gradation of Neocomian clinocyclites in the north-west direction. Within the study area, mapped three large landslide bodies in the Bazhenov formation interval, each of which was formed an internal zonality and because of the introduction of rocks from the overlying interval.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Hongwei Liu ◽  
Yi Luo

The finite-difference solution of the second-order acoustic wave equation is a fundamental algorithm in seismic exploration for seismic forward modeling, imaging, and inversion. Unlike the standard explicit finite difference (EFD) methods that usually suffer from the so-called "saturation effect", the implicit FD methods can obtain much higher accuracy with relatively short operator length. Unfortunately, these implicit methods are not widely used because band matrices need to be solved implicitly, which is not suitable for most high-performance computer architectures. We introduce an explicit method to overcome this limitation by applying explicit causal and anti-causal integrations. We can prove that the explicit solution is equivalent to the traditional implicit LU decomposition method in analytical and numerical ways. In addition, we also compare the accuracy of the new methods with the traditional EFD methods up to 32nd order, and numerical results indicate that the new method is more accurate. In terms of the computational cost, the newly proposed method is standard 8th order EFD plus two causal and anti-causal integrations, which can be applied recursively, and no extra memory is needed. In summary, compared to the standard EFD methods, the new method has a spectral-like accuracy; compared to the traditional LU-decomposition implicit methods, the new method is explicit. It is more suitable for high-performance computing without losing any accuracy.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Fengjiao Zhang ◽  
Pan Zhang ◽  
Zhuo Xu ◽  
Xiangbo Gong ◽  
Liguo Han

The seismic exploration method could explore deep metal ore bodies (depth > 1000 m). However, it is difficult to describe the geometry of the complex metal ore body accurately. Seismic full waveform inversion is a relatively new method to achieve accurate imaging of subsurface structures, but its success requires better initial models and low-frequency data. The seismic data acquired in the metal mine area is usually difficult to meet the requirements of full waveform inversion. The passive seismic data usually contains good low frequency information. In this paper, we use both passive and active seismic datasets to improve the full waveform inversion results in the metal mining area. The results show that the multisource seismic full waveform inversion could obtain a suitable result for high-resolution seismic imaging of metal ore bodies.


2021 ◽  
Vol 21 (3) ◽  
pp. 102-108
Author(s):  
Vladislav I. Galkin ◽  
Daria V. Rezvukhina

A method for predicting losses over the area of the deposit to minimize the risks of accidents and gas and oil and water showings for the Permian-Carboniferous reservoir of the Usinskoye field was developed. In addition, the analysis of the influence of faults on the number of losses in wells during drilling was carried out. Based on the more than 250 wells drilling analysis, it was revealed that a significant problem during drilling was the loss of drilling fluid. This complication was found in 46% of drilled wells. The intensity of the studied losses was in a wide range: from insignificant losses to strong ones, with a complete loss of mud circulation. The faults identified both from well drilling data and from seismic data were characterized by a different number of wells with and without losses. Using the combination of various statistical methods, individual and complex models for predicting losses in wells depending on the distance from the fault were obtained. Using multilevel probabilistic-statistical modeling, the study of the influence of faults on losses was carried out: initially, based on the data of all wells, regardless of the methods for identifying faults - the first-level model; by the method of identifying faults (drilling / seismic exploration) - second-level models; according to the data of individual faults - the model of the third level. At the fourth level, a complex model was built, which takes into account the calculation results obtained at the previous levels of statistical modeling. The presence of direct and inverse dependences of the absorption probability from the shortest distance to the fault was established. Using linear discriminant analysis, the results of predicting the probability of absorption were checked.


Sign in / Sign up

Export Citation Format

Share Document