input gain
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 2094 (2) ◽  
pp. 022080
Author(s):  
P V Belolipetskii ◽  
G Y Shajdurov ◽  
V S Potylitsyn ◽  
V V Romanov

Abstract The article deals with the design of receiving equipment for the passive method of induced polarization (IP). It is shown that the best option for recording this kind of signals is a circuit with an input analogue part and amplification of 50-100 times, as well as an input gain of at least 3 MΩ and a digital part based on a modern twenty-four-bit analogue-to-digital converter (ADC). In this case, it is preferable to use one ADC per channel without multiplexing, for better suppression of inter-channel interference. Signal processing is performed using modern microcontrollers based on the Cortex M4 core, and then the data is transmitted via Bluetooth to a laptop or tablet, where visualization and post-processing is carried out. Thus, the proposed scheme for the implementation of the receiving equipment meets all the requirements for the receiving equipment for the passive IP method, and can be introduced into the practice of field work.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2380
Author(s):  
Ding-Horng Chen ◽  
Chun-Tang Chao ◽  
Juing-Shian Chiou

An infinite-bound stabilization of a system modeled as singularly perturbed bilinear systems is examined. First, we present a Lyapunov equation approach for the stabilization of singularly perturbed bilinear systems for all ε∈(0, ∞). The method is based on the Lyapunov stability theorem. The state feedback constant gain can be determined from the admissible region of the convex polygon. Secondly, we extend this technique to study the observer and observer-based controller of singularly perturbed bilinear systems for all ε∈(0, ∞). Concerning this problem, there are two different methods to design the observer and observer-based controller: one is that the estimator gain can be calculated with known bounded input, the other is that the input gain can be calculated with known observer gain. The main advantage of this approach is that we can preserve the characteristic of the composite controller, i.e., the whole dimensional process can be separated into two subsystems. Moreover, the presented stabilization design ensures the stability for all ε∈(0, ∞). A numeral example is given to compare the new ε-bound with that of previous literature.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 907
Author(s):  
Radosław Patelski ◽  
Dariusz Pazderski

In this paper, a problem of influence of an input-gain uncertainty on the tracking performance of a control structure designed according to the Active Disturbance Rejection Control (ARDC) paradigm is investigated. This problem is exemplified using the second-order plant. It is presented that conscious choice of the input-gain parameter different to that of the real plant may lead to a significant improvement of the control precision if the controller is designed in an error domain. Obtained results indicate that the closed-loop system remains stable, and the tracking errors decrease if the value of this parameter follows from multiplying the plant gain input by a positive factor smaller than a certain threshold value. The upper limit for this factor is investigated in the paper and outcomes are presented for various implementation variants. Results of numerical computations, simulations and experiments are presented to consider this bounding value in individual cases.


2021 ◽  
Vol 275 ◽  
pp. 02013
Author(s):  
Qi Hui Lu ◽  
Qian Hong Tan

Supported by the agricultural technology, the intelligent agricultural development is flourishing. However, due to the high technology cost and investment risk, intelligent agriculture in China is still in the exploration stage. This article designs the appropriate cost sharing mechanism under the two-stage supply chain system, which composes of a farmer, a core enterprise and a commercial bank. With the comparison between commercial bank financing model and the buyer guarantees financing model, this paper researches the optimal decisions of supply chain members and the influence of the cost-sharing ratio, technical input gain effect and the buyer guarantees ratio. The results show that the profit will increase with the add of technical input gain effect. Besides, only under certain conditions, cost sharing is valuable to each member. Finally, numerical examples show existing an optimal interest rate spread area that all members would benefit from the buyer guarantee financing model.


2020 ◽  
Vol 26 (7) ◽  
pp. 97-114
Author(s):  
Qays Jebur Sabr

sensor sampling rate (SSR) may be an effective and crucial field in networked control systems.  Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the current zone and current sensor rate for each zone. Due to the low input gain of the fuzzy controller, the steady state output error of the greenhouse temperature is in the range (0.55 – 11.22) % when the system using five sensors of different sampling rates and in the range (2.43 - 16.74) % when the system using five sensors with the same sampling rates. Next, after designing the fuzzy error handler, this error doesn’t exceed 1.6%, but in most cases it is less than 0.15%.The work is Simulink designed and implemented using Matlab R2012b. The Zigbee wireless network is proposed for the system, it is implemented in Matlab using True time 2.0 library.


2020 ◽  
pp. 002029402091521 ◽  
Author(s):  
Sen Chen ◽  
Zhixiang Chen ◽  
Zhiliang Zhao

The paper studies the control problem for nonlinear uncertain systems with the situation that only the current reference signal is available. By constructing a memory structure to save the previous reference signals, a novel error-based active disturbance rejection control with an approximation for the second-order derivative of reference signal is proposed. The transient performance of the proposed method is rigorously studied, which implies the high consistence of the closed-loop system. More importantly, to attain the satisfactory tracking performance, the necessary condition for nominal control input gain is quantitatively investigated. Furthermore, the superiority of the proposed method is illuminated by contrastively evaluating the sizes of the total disturbance and its derivative. The proposed method can alleviate the burden of the estimation and compensation for total disturbance. Finally, the experiment for a manipulator platform shows the effectiveness of the proposed method.


2020 ◽  
Vol 26 (23-24) ◽  
pp. 2243-2260 ◽  
Author(s):  
Mohammad Reza Homaeinezhad ◽  
Sadeq Yaqubi

In this article, a new control method is proposed based on finite-time discrete sliding mode control for uncertain multi-input multi-output systems which are affine to their inputs considering uncertain input multipliers in the case where signs of input gains remain constant over uncertainty spaces. In addition, a method for solving a set of convex control inequalities is introduced. The proposed control strategy is based on merging data obtained from investigation of common candidate Lyapunov functions assigned to various subsystems and their subsequent decoupling based on matrix elementary row operations. Initially, separate sliding functions corresponding to a single degree of freedom are assigned to each subsystem in the overall multi-input multi-output system, which results in obtaining a convex inequality corresponding to input bounds. Stacking the data obtained from various subsystems, the product of the uncertain input gain matrix in input vector is obtained as the middle term in a set of convex inequalities. Subsequently, the convex inequality is solved according to a set of matrix elementary row operations transforming the corresponding input matrix to row echelon form such that the bounds of each input are clearly expressed. Then, based on assigning input bounds proximity factors to each lower bound–upper bound duo, appropriate control inputs are generated. Chattering effects are eliminated as no switching term is included in construction of the control model. Effectiveness of the proposed method is demonstrated using numerical simulations. The implementation of control algorithm using microprocessors is also illustrated, indicating the feasibility of digital application.


Sign in / Sign up

Export Citation Format

Share Document