acceleration process
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 82)

H-INDEX

18
(FIVE YEARS 5)

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Shuaijun Ma ◽  
Xiaohong Zhang ◽  
Ke Yan ◽  
Yongsheng Zhu ◽  
Jun Hong

Cage stability directly affects the dynamic performance of rolling bearing, which, in turn, affects the operating state of rotating equipment. The random collision between the rolling elements and the cage pocket is the main reason for cage instability. In this paper, from the perspective of the relative sliding velocity between the rolling elements and the bearing raceway, the interactions of the rolling elements and the cage pockets were analyzed, and the four zones with different collision features were defined. On this basis, and on the basis of the bearing dynamics model, the interaction of two adjacent rolling elements and the cage pockets in the a’–b’ area is discussed, and the peak impact force of the adjacent two balls and the cage pockets was investigated in terms of the rotation speed, radial load, acceleration/deceleration, and materials. When the ball runs close to the loaded zone, the probability of multiball random collision increases, which leads to an increase in the cage instability. At the entrance of the loaded zone, the peak impact force has the greatest impact on the cage stability during the acceleration process. Compared to the radial load applied to the bearing, the peak impact force is more sensitive to the bearing speed changes. The multiball collision analysis method provides a new idea for the research of cage stability.


2021 ◽  
pp. 13-22
Author(s):  
Serhii Shuklinov ◽  
Anatoly Uzhva ◽  
Mikhail Lysenko ◽  
Anastasia Tishenko ◽  
Yevgeniya Novikova

Problem. The disadvantage of current dependences for determining the acceleration indicators at engine maximum brake power and driving tire-to-surface friction coefficients is that they are adequate only if the engine and transmission parameters provide power input to the drive wheels rolling without slipping regardless to speed. To eliminate this drawback, it is necessary to take into account that the power input to the drive wheels depends on the engine shaft speed, and therefore on the speed of the vehicle when accelerating. Goal. The purpose of the work is to further develop the theory of the automobile by improving the dependencies that allow determining the automobile acceleration rates and assessing the nature of its acceleration process from the design factors. Methodology. The approaches taken to achieve this goal are based on laws of physics, theoretical mechanics and the theory of automobile. Results. Analytic dependences for determining maximum and limiting automobile acceleration when speeding up depending on its design factors and speed have been improved. Dependences for determining the range of drive wheel slipping on the automobile speed when accelerating and the limiting automobile acceleration under the condition of its pitch stability have been obtained. When studying the automobile acceleration process theoretically it was found that the developed dependences allow determining the nature of automobile movement and assessing the influence of its design factors on the acceleration indicators. Originality. The obtained dependences for determining the maximum and limiting acceleration, the range of driving speeds with wheel slip when automobile accelerating allowed us to clarify the idea of the nature of movement during acceleration and the influence of automobile design factors on the acceleration indicators. Practical value. The obtained dependences can be used in designing new and improving racing cars such as dragsters, and analysing the dynamics of the vehicle when accelerating with full fuel delivery and determining the nature of driving tire-to-surface friction depending on the driving speed.


2021 ◽  
Author(s):  
Jarosław Mamala ◽  
Mariusz Graba ◽  
Andrzej Bieniek ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek ◽  
...  

The analysis of the vehicle acceleration process is a current topic based on the aspects related to the general characteristics of the car, its parameters, design, drive unit performance, and the influence of external factors. Therfore in the article, the authors assessed the dynamic and energy parameters of the car motion, in which the intensity of acceleration of the car with different intensities was examined. Acceleration was carried out in two variants, the first for a normal internal combustion engine and the second for the same engine but additionally equipped with a short-term boost system. In this way, it influences the increase in power and energy in the car drive system, changing its acceleration intensity. Variable car acceleration intensity was obtained in the range from 0.12 to 1.37 m/s2 , and energy consumption at the level of 0.4 to 1.2 MJ in the distance of 1/4 mile. The article proposes a combination of energy parameters and engine power in order to assess the acceleration dynamics, for this purpose, the specific energy consumption of the car was determined, ranging from 0.35 to 2.0 J/(kg∙m), which was related to the engine power, denoting it with the dynamics index. The study focuses on the assessment of the relationship between the specific energy consumption and acceleration of passenger cars in the available powertrain system using a new dynamics index. The proposed dynamics index combines the energy and dynamic parameters of the car to be able to objectively quantify the acceleration process.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7885
Author(s):  
Piotr Deuszkiewicz ◽  
Jacek Dziurdź ◽  
Paweł Fabiś

This article presents a proposal to describe the pressure changes in the combustion chamber of an engine as a function of the angle of rotation of the crankshaft, taking into account changes in rotational speed resulting from acceleration. The aim of the proposed model is to determine variable piston forces in simulation studies of torsional vibrations of a crankshaft with a vibration damper during the acceleration process. Its essence is the use of a Fourier series as a continuous function to describe pressure changes in one cycle of work. Such a solution is required due to the variable integration step during the simulation. It was proposed to determine the series coefficients on the basis of a Fourier transform of the averaged waveform of a discreet open indicator diagram, calculated for the registration of successive cycles. Recording of the indicative pressure waveforms and shaft angle sensor signals was carried out during tests on the chassis dynamometer. An analysis of the influence of the adopted number of series coefficients on the representation of signal energy was carried out. The model can also take into account the phenomenon of work cycle uniqueness by introducing random changes in the coefficients with magnitudes set on the basis of determined standard deviations for each coefficient of the series. An indispensable supplement to the model is a description of changes in the engine rotational speed, used as a control signal for the PID controller in the simulation of the load performed by the dynamometer. The accuracy of determining the instantaneous rotational speed was analyzed on the basis of signals from the crankshaft position angle sensor and the piston top dead center (TDC) sensor. Limitations resulting from the parameters of digital signal recording were defined.


Author(s):  
Desheng Zhou ◽  
Jingfeng Tang ◽  
Qiang Liu ◽  
Liwei Zhou ◽  
Liqiu Wei ◽  
...  

Abstract Breaking through the corona discharge current limit and improving the ionization and acceleration process are beneficial to improve the performance of the electroaerodynamic thruster. In this paper, a dual-frequency source of DC and NSP (nanosecond pulse) are applied to generate ionic wind. Electrical, optical and thrust characteristics are compared for the electroaerodynamic thruster with and without the NSPD (nanosecond pulse discharge). The experimental results indicate that the thrust characteristics are enhanced under the effect of dual-frequency sources. Moreover, the inception DC voltage to generate ionic wind is much lower.


2021 ◽  
Vol 931 ◽  
Author(s):  
Luis Javier Perez-Lorenzo ◽  
Juan Fernandez de la Mora

Time of flight (TOF) and energy analysis in vacuum are used in series to determine jet velocity Uj, diameter dj, electrical potential Vj and energy dissipated ΔV at the breakup point of electrified nanojets of the ionic liquid 1-Ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (EMI-FAP) (Ignat'ev et al., J. Fluorine Chem., vol. 126, issue 8, 2008, pp.1150–1159). The full spray is periodically gated by a grid held at a high voltage Vg, and received at a collector where the measured flight times provide the distribution of drop speeds u. Varying Vg provides the bivariate distribution of drop energies ξ and velocities. The collector plate, centred with the beam axis, is divided into eight concentric rings, yielding the angular distribution of the spray current, and high resolution (u,ξ) values in the whole spray. The energies of various particles of given u are all well defined, but depend uniquely on u, even though u and ξ are in principle independent experimental variables. Slow and fast particles have energies respectively well above and below the capillary voltage Ve (1.64 kV). As previously shown by Gamero-Castaño & Hruby (J. Fluid Mech., vol. 459, 2002, pp. 245–276), this behaviour is due to the 2-stage acceleration process, first jointly in the jet for all particles, and then separately for free flying drops or ions of different mass/charge. The measured two-dimensional distributions of u and ξ provide the jet velocity Uj (~0.44 km s−1) and electrical potential Vj (1.2 kV) at the breakup point. All molecular ions originate near the breakup point rather than the meniscus neck. A measurable fraction of anomalously fast drops is observed that must come from Coulomb fissions of the main drops.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012040
Author(s):  
Kangwei Yang ◽  
Xuewen He

Abstract In order to study the influence of the internal flow field of the fluidized bed opposed jet mill on the motion behavior of particles, Computational Fluid Dynamics (CFD) and Discrete Dlement Method (DEM) are used for coupling calculations. By adjusting the nozzle spacing and inlet pressure, Numerical simulation is carried out on the process of particles collisions with each other after accelerating under the high-speed jet produced by the nozzle. The trajectory of the particles in the flow field of the collision area and the change of the collision state of the particles are analyzed. Finally, the best parameters are selected based on the total collision energy. The results show that the particles will gradually shift and spread during the acceleration process. The reduction of the nozzle spacing is beneficial to increase the probability of particle collisions. However, if the spacing is too small, the particles cannot be fully accelerated; the increase in inlet pressure will increase the kinetic energy of the particles, and number of collisions is almost unaffected. By comparing the total collision energy, the best-simulated preparation conditions are selected as 110mm and 1.1MPa.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinxing Zheng ◽  
Haiyang Liu ◽  
Yuntao Song ◽  
Cheng Zhou ◽  
Yong Li ◽  
...  

AbstractHigher magnetic fields are always favoured in the magnetoplasmadynamic thruster (MPDT) due to its superior control of the plasma profile and acceleration process. This paper introduces the world's first integrated study on the 150 kW level AF-MPDT equipped with a superconductive coil. A completely new way of using superconducting magnet technology to confine plasma with high energy and extremely high temperatures is proposed. Using the PIC method of microscopic particle simulation, the plasma magnetic nozzle effect and performance of the MPDT under different magnetic-field conditions were studied. The integrated experiment used demonstrated that, in conjunction with the superconducting coil, greater homogeneity and a stronger magnetic field not only caused more even cathode ablation and improved its lifespan but also improved the performance of the MPDT (maximum thrust was 4 N at 150 kW, 0.56 T). Maximum thrust efficiency reached 76.6% and the specific impulse reached 5714 s.


Author(s):  
G. Li ◽  
X. Wu ◽  
F. Effenberger ◽  
L. Zhao ◽  
S. Lesage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document