separation flow
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 52)

H-INDEX

13
(FIVE YEARS 3)

Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 39-52
Author(s):  
Qi Li ◽  
Wei Rao ◽  
Xiaoli Cheng ◽  
Haogong Wei ◽  
Chuang Wang ◽  
...  

AbstractThe clear differences between the atmosphere of Mars and the Earth coupled with the lack of a domestic research basis were significant challenges for the aerodynamic prediction and verification of Tianwen-1. In addition, the Mars entry, descent, and landing (EDL) mission led to specific requirements for the accuracy of the aerodynamic deceleration performance, stability, aerothermal heating, and various complex aerodynamic coupling problems of the entry module. This study analyzes the key and difficult aerodynamic and aerothermodynamic problems related to the Mars EDL process. Then, the study process and results of the design and optimization of the entry module configuration are presented along with the calculations and experiments used to obtain the aerodynamic and aerothermodynamic characteristics in the Martian atmosphere. In addition, the simulation and verification of the low-frequency free oscillation characteristics under a large separation flow are described, and some special aerodynamic coupling problems such as the aeroelastic buffeting response of the trim tab are discussed. Finally, the atmospheric parameters and aerodynamic characteristics obtained from the flight data of the Tianwen-1 entry module are compared with the design data. The data obtained from the aerodynamic design, analysis, and verification of the Tianwen-1 entry module all meet the engineering requirements. In particular, the flight data results for the atmospheric parameters, trim angles of attack, and trim axial forces are within the envelopes of the prediction deviation zones.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012004
Author(s):  
S A Isaev ◽  
A I Leontiev ◽  
D V Nikushchenko ◽  
D Kong ◽  
K M Chung ◽  
...  

Abstract An energy-efficient flat surface is formed when applying single-row cross-flow zigzag grooves (VVVVVV) in a dense arrangement. Convective heat transfer is considered in turbulent flow around a longitudinal fragment of a plate with a length of 40 and a width of 4 with a package of 14 singlerow inclined backslash(\)-shaped grooves with symmetry conditions at the lateral boundaries. The width of the grooves is 1, the depth is 0.25, the edge rounding radius is 0.2, the angles of inclination are 30°, 45°, 50° and 60°, the pitch is 2.4, the Reynolds number is 104, and the thickness of the incoming boundary layer is 0.175. The phenomenon of anomalous enhancement of the separation flow and heat transfer in zigzag grooves and acceleration of the wall flow discovered in inclined oval-trench dimples has been confirmed.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012025
Author(s):  
A. S. Lebedev ◽  
M. I. Sorokin ◽  
D. M. Markovich

Abstract The development of methods of active separation flow control is of great applied importance for many technical and engineering applications. Understanding the conditions for the flow separation from the surface of a bluff body is essential for the design of aircrafts, cars, hydro and gas turbines, bridges and buildings. Drag, acoustic noise, vibrations and active flow mixing depend drastically on the parameters of the vortex separation process. We investigated the possibility of reducing the longitudinal length of a reverse-flow region using the method of «synthetic jet» active separation flow control. The experiment was carried out on a compact straight-through wind channel with a 1-m long test section of a cross-section of 125x125 mm. The jet was placed at the rear stagnation point of a circular cylinder. The Reynolds number, based on the cylinder diameter and the free-stream velocity, was 5000 and the von Kármán street shedding frequency without the synthetic jet was equal to 64.8 Hz. For the first time, for such a set of parameters, we applied high speed PIV to demonstrate that the injection of the synthetic jet into the cylinder wake region leads to a significant reduction in the longitudinal length of the reverse-flow region.


Author(s):  
Xueyu Bai ◽  
Qingbing Dong ◽  
Han Zheng ◽  
Kun Zhou

AbstractThis study presents a numerical model for the thermal-elastohydrodynamic lubrication of heterogeneous materials in impact motion, in which a rigid ball bounces on a starved non-Newtonian oil-covered plane surface of an elastic semi-infinite heterogeneous solid with inhomogeneous inclusions. The impact–rebound process and the microscopic response of the subsurface inhomogeneous inclusions are investigated. The inclusions are homogenized according to Eshelby’s equivalent inclusion method. The Elrod algorithm is adopted to determine the lubrication starvation based on the solutions of pressure and film thickness, while the lubricant velocity and shear rate of the non-Newtonian lubricant are derived by using the separation flow method. The dynamic response of the cases subjected to constant impact mass, momentum, and energy is discussed to reveal the influence of the initial drop height on the impact–rebound process. The results imply that the inclusion disturbs the subsurface stress field and affects the dynamic response of the contact system when the surface pressure is high. The impact energy is the decisive factor for the stress peak, maximum hydrodynamic force, and restitution coefficient, while the dynamic response during the early approaching process is controlled by the drop height.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012018
Author(s):  
S A Isaev ◽  
A I Leontiev ◽  
E E Son ◽  
S V Guvernyuk ◽  
M A Zubin ◽  
...  

Abstract At the stands of Research Institute of Mechanics at the Moscow State University, we experimentally confirmed the mechanism of anomalous intensification of the separation flow and heat exchange in inclined oval-trench dimples (OTD) on the plate, which was discovered during numerical studies. The measured static pressure differences in single OTD at Re=6.7×104 are in good agreement with the numerical forecasts within the framework of the RANS approach at Re=104.


Author(s):  
Mohan Bhatale ◽  
Neelakandan Kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan Ramalingam

A simple, rapid, selective, and reproducible Gas chromatographic mass spectrometry (GC-MS) method has been developed and validated for the estimation of Diethyl Phosphite content in Foscarnet Sodium USP Drug substance. The drugs were estimated using HP-5, Length-30 M, Internal diameter 0.32 mm; Film thickness 1 μ at a total flow rate of 11.9 ml/min, and column flow of 1.49 ml/min was used for the separation. Flow control mode was pressure. Column oven temperature 70°C and injector temperature 220°C. Oven program modified for proper elution of peak. The linearity range used was 0.025-0.120µg/ml and (Rt) was 6.7 min. The correlation coefficient values were found to be 0.997. Precession studies showed % RSD values less than 15.0% for all the selected concentrations. The percentage recovery of Diethyl phosphite from LOQ to 150% was found in range of 100.7 -116.7%. The content results of Phophite content were within the limits of less than 0.12 ppm. The method was validated as per the International Conference on Harmonization (ICH) guidelines. The developed method was successfully used for the quantitative analysis of commercially available dosage forms.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012008
Author(s):  
P A Polivanov ◽  
A A Sidorenko

Abstract Experimental studies of pressure pulsations on the surface of a small unmanned aerial vehicle (SUAV) are carried out in a wind tunnel. The onset of the separation flow is determined on the basis of PIV and loads measurements. It is found that an increase of pressure pulsations does not always correspond to flow separation. The paper proposes to use correlation analysis to determine the flow separation by finding large-scale coherent structures generated by the separation.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012005
Author(s):  
D V Khotyanovsky ◽  
A N Kudryavtsev ◽  
A I Kutepova

Abstract Interaction of the disturbed supersonic boundary layer with an incident oblique shock wave is studied numerically with eddy-resolving numerical simulations. Eigenmodes of the linear stability theory are used to generate the inflow boundary layer disturbances. The evolution of unstable boundary-layer disturbances, effects of the incident shock on the disturbances, effects of the disturbances on the boundary layer separation, flow dynamics in the separation zone, and laminar-turbulent transition are studied.


2021 ◽  
pp. 1-30
Author(s):  
Jerome Boudet ◽  
Emmanuel Lévêque ◽  
Hatem Touil

Abstract Lattice-Boltzmann simulations of corner separation flow in a compressor cascade are presented. The lattice Boltzmann approach is rather new in the context of turbomachinery and the configuration is known to be particularly challenging for turbulence modelling. The present methodology is characterized by a quasi-autonomous meshing strategy and a limited computational cost (a net ratio of 5 compared to a previous finite-volume compressible Navier-Stokes simulation). The simulation of the reference case (4° incidence) shows a good agreement with the experimental data concerning the wall pressure distribution or the distribution of losses. A good description is also obtained when incidence angle is increased to 7°, with a span-wise development of the separation. Subsequently, the methodology is used to investigate the sensitivity of the flow to the end-wall boundary-layer thickness. A thinner boundary-layer results in a smaller corner separation, but not a complete elimination. Finally, the ingredients of the wall modelling are analysed in details. On the one hand, the curvature correction term promotes transition to turbulence on the blade suction side and avoids a spurious separation. On the other hand, the addition of the pressure-gradient correction term allows a wider and more realistic corner separation.


Sign in / Sign up

Export Citation Format

Share Document