cysteine proteinase inhibitor
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 14)

H-INDEX

44
(FIVE YEARS 3)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3143-3143
Author(s):  
Alessandro S Pinheiro ◽  
Douglas E Teixeira ◽  
Alona A. Merkulova ◽  
Keith R. McCrae ◽  
Philip J Rosenthal ◽  
...  

Abstract Human malaria is a complex disease and a leading cause of mortality in children under 5 years of age. Plasmodium falciparum (Pf) is the agent responsible for cerebral malaria. Parasite infected erythrocytes are sequestered in the brain vasculature, disrupting the blood-brain-barrier, and with systemic inflammation leading to progressive brain edema. The precise pathophysiologic mechanism(s) underlying brain swelling in CM is not known. Recent work from our laboratories indicates that there is a role for bradykinin (BK) in fluid transport in human brain microvascular endothelial cells (Front Med 6:75, 2019). We examined the role of bradykinin (BK) in pediatric CM. Initial studies showed recombinant falcipain-2, a cysteine protease contained in the parasite digestive vacuole, was inhibited by high molecular weight kininogen (HK), with an IC 50=36 nM. Further, falcipain-2, but not the related protease falcipain 3, hydrolyzed the chromogenic substrate S2302 (Pro-Phe-Arg-pNA) at pH 7.4 with an 88 nM K m. These results suggest that falcipain-2 has plasma kallikrein-like activity. HK is both an inhibitor and substrate of falcipain-2. Molar excess HK to falcipain-2 (ratio 8:1 to 2:1) blocked the proteolytic activity of the cysteine protease at pH 7.4. Equal molar falcipain-2 to HK (1:1) resulted in kallikrein-like cleavage of HK with stable BK liberation over 1 h. Molar excess falcipain-2 to HK (1:2 and greater) led to progressive HK cleavage into smaller proteins and peptides. The falcipain-2 major cleavages observed by N-terminal sequencing were in Domain 3 of the heavy chain of HK, the cysteine protease inhibitory region (I 292ASFSQNCDIYPGKDF 303, D 320IPTNSPELEETLT 334, and E 412KKIYPTVNCQPLG 425). P. falciparum trophozoite lysates completely hydrolyzed purified and plasma HK into a ~64 kDa heavy chain and ~46 kDa light chain in buffer containing EDTA, pepstatin, and PMSF. The cysteine proteinase inhibitor E64 blocked this cleavage, suggesting that the relevant activity was that of a cysteine protease. Plasma from Kenyan children presenting with CM (fever, parasitemia, coma) had evidence of circulating cHK, indicative of BK released from HK. Forty percent (8 of 20) of CM patients had no intact 120 kDa HK at hospital entry. In contrast, only 16% (3 of 8) of children with uncomplicated malaria had detectable cHK. In CM patients, the HK level before antimalarial treatment (58 ± 3.9 µg/ml) was significantly lower than the value after clinical recovery (69 ± 3.6 µg/ml; p<0.04) as measured by competitive ELISA. We also examined the roles of BK and HK in experimental cerebral malaria. 10 6 infected red blood cells with P. berghei ANKA were injected intraperitoneally into wild-type (C57BL/6) and total kininogen deficient (kgn1 -/-) C57BL/6 mice. The level of parasitemia on day 5 post-infection was ≥ 8% for both groups of mice (Figure 1). The kgn1 -/- mice had protected neuronal function measured by SHIRPA score relative to wild-type mice. Cerebral edema detected in wild- type mice by Evans Blue dye extravasation test was nearly completely attenuated in kgn1 -/- mice. Corroborative studies were performed in BK B2 receptor deleted (bdkrb2 -/-) mice. In mice with 15% parasitemia for both genotypes, there was significantly less neurologic function deterioration and a 30% reduction in cerebral Evans blue extravasation into brain parenchyma in the bdkrb2 -/- mice. These data strongly suggest that falcipain-2 liberates BK from HK by acting like plasma kallikrein and in high concentrations destroys HK's cysteine protease inhibitory region. Some children with CM have in vivo evidence of prior HK proteolysis. Total kininogen deficiency protects mice from lethal experimental CM. Taken together, these data suggest that bradykinin is a proximal mediator of cerebral malaria. Figure 1 Figure 1. Disclosures McCrae: Dova, Novartis, Rigel, and Sanofi Genzyme: Consultancy; Sanofi, Novartis, Alexion, and Johnson & Johnson: Consultancy, Honoraria.


2021 ◽  
Vol 22 (18) ◽  
pp. 10073
Author(s):  
Ji-Nam Kang ◽  
Woo-Haeng Lee ◽  
So Youn Won ◽  
Saemin Chang ◽  
Jong-Pil Hong ◽  
...  

Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1230
Author(s):  
Supasek Kongsomros ◽  
Ampa Suksatu ◽  
Phongthon Kanjanasirirat ◽  
Suwimon Manopwisedjaroen ◽  
Somsak Prasongtanakij ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs). We hypothesized that small molecule inhibitors of EV biogenesis/release could exert an anti-SARS-CoV-2 effect. Here, we screened 17 existing EV inhibitors and found that calpeptin, a cysteine proteinase inhibitor, exhibited the most potent anti-SARS-CoV-2 activity with no apparent cytotoxicity. Calpeptin demonstrated the dose-dependent inhibition against SARS-CoV-2 viral nucleoprotein expression in the infected cells with a half-maximal inhibitory concentration (IC50) of 1.44 µM in Vero-E6 and 26.92 µM in Calu-3 cells, respectively. Moreover, calpeptin inhibited the production of infectious virions with the lower IC50 of 0.6 µM in Vero E6 cells and 10.12 µM in Calu-3 cells. Interestingly, a combination of calpeptin and remdesivir, the FDA-approved antiviral drug against SARS-CoV-2 viral replication, significantly enhanced the anti-SARS-CoV-2 effects compared to monotherapy. This study discovered calpeptin as a promising candidate for anti-SARS-CoV-2 drug development. Further preclinical and clinical studies are warranted to elucidate the therapeutic efficacy of calpeptin and remdesivir combination in COVID-19.


2021 ◽  
Vol 22 (6) ◽  
pp. 3225
Author(s):  
Babar Usman ◽  
Neng Zhao ◽  
Gul Nawaz ◽  
Baoxiang Qin ◽  
Fang Liu ◽  
...  

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008805
Author(s):  
David Holcomb ◽  
Aikaterini Alexaki ◽  
Nancy Hernandez ◽  
Ryan Hunt ◽  
Kyle Laurie ◽  
...  

Thrombosis is a recognized complication of Coronavirus disease of 2019 (COVID-19) illness and is often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms, by which some of these variants may contribute to disease, are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.


2021 ◽  
Vol 25 ◽  
pp. 100876
Author(s):  
Natalia N.S. Nunes ◽  
Rodrigo S. Ferreira ◽  
Leonardo F.R. de Sá ◽  
Antônia Elenir A. de Oliveira ◽  
Maria Luiza V. Oliva

2020 ◽  
Author(s):  
David Holcomb ◽  
Aikaterini Alexaki ◽  
Nancy Hernandez ◽  
Kyle Laurie ◽  
Jacob Kames ◽  
...  

AbstractThrombosis has been one of the complications of the Coronavirus disease of 2019 (COVID-19), often associated with poor prognosis. There is a well-recognized link between coagulation and inflammation, however, the extent of thrombotic events associated with COVID-19 warrants further investigation. Poly(A) Binding Protein Cytoplasmic 4 (PABPC4), Serine/Cysteine Proteinase Inhibitor Clade G Member 1 (SERPING1) and Vitamin K epOxide Reductase Complex subunit 1 (VKORC1), which are all proteins linked to coagulation, have been shown to interact with SARS proteins. We computationally examined the interaction of these with SARS-CoV-2 proteins and, in the case of VKORC1, we describe its binding to ORF7a in detail. We examined the occurrence of variants of each of these proteins across populations and interrogated their potential contribution to COVID-19 severity. Potential mechanisms by which some of these variants may contribute to disease are proposed. Some of these variants are prevalent in minority groups that are disproportionally affected by severe COVID-19. Therefore, we are proposing that further investigation around these variants may lead to better understanding of disease pathogenesis in minority groups and more informed therapeutic approaches.Author summaryIncreased blood clotting, especially in the lungs, is a common complication of COVID-19. Infectious diseases cause inflammation which in turn can contribute to increased blood clotting. However, the extent of clot formation that is seen in the lungs of COVID-19 patients suggests that there may be a more direct link. We identified three human proteins that are involved indirectly in the blood clotting cascade and have been shown to interact with proteins of SARS virus, which is closely related to the novel coronavirus. We examined computationally the interaction of these human proteins with the viral proteins. We looked for genetic variants of these proteins and examined how these variants are distributed across populations. We investigated whether variants of these genes could impact severity of COVID-19. Further investigation around these variants may provide clues for the pathogenesis of COVID-19 particularly in minority groups.


Planta ◽  
2020 ◽  
Vol 252 (2) ◽  
Author(s):  
Aline Medeiros Lima ◽  
Nicolle Louise Ferreira Barros ◽  
Ana Camila Oliveira Freitas ◽  
Liliane Souza Conceição Tavares ◽  
Carlos Priminho Pirovani ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Abigail Ngugi-Dawit ◽  
Thi My Linh Hoang ◽  
Brett Williams ◽  
Thomas J.V. Higgins ◽  
Sagadevan G. Mundree

Cajanus scarabaeoides (L.), Thouars, is the closest wild crop relative of cultivated pigeonpea, Cajanus cajan (L.), Millspaugh. This wild pigeonpea has several insect-resistance mechanisms, particularly to Helicoverpa armigera (Hübner). Estimated economic losses in the semi-arid tropics from H. armigera damage in pigeonpea are approximately two billion USD/year. Therefore, it is imperative to improve pest resistance in this crop. In this study, we investigated insect-resistance components in IBS 3471, a C. scarabaeoides accession, and explored the possibility of transferring resistance mechanism/s to cultivated pigeonpea. A detached leaf bioassay revealed that IBS 3471 has more effective antibiosis and antixenosis resistance mechanisms against H. armigera compared to the susceptible C. cajan variety, ICPL 87. To further investigate the antibiosis resistance mechanism, we fed H. armigera larvae a heated and non-heated artificial diet supplemented with lyophilised IBS 3471 leaf powder. Incorporation of IBS 3471 leaf powder inhibited H. armigera larval weight and delayed larval development compared to larvae reared on diet supplemented with ICPL 87 leaf powder. The putative insect-resistance compounds in C. scarabaeoides were heat-labile. Proteomic analysis revealed higher levels of potential insecticidal proteins, namely lectin and cysteine proteinase inhibitor, in wild pigeonpea compared to the cultivated variety. Nutritional analysis and interspecific hybridisation experiments also indicated that IBS 3471 is a potential candidate for improvement of insect-resistance in pigeonpea. This study demonstrates that IBS 3471 has multiple resistance mechanisms against H. armigera, and they are transferable to cultivated pigeonpea.


Sign in / Sign up

Export Citation Format

Share Document