lignocellulose degradation
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 111)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Vol 204 (2) ◽  
Author(s):  
Yunpeng Guan ◽  
Hongyu Zhu ◽  
Yuan Zhu ◽  
Hemei Zhao ◽  
Longhua Shu ◽  
...  

2022 ◽  
Author(s):  
Chao Duan ◽  
Feng-Hua Tian ◽  
Lan Yao ◽  
Jian-Hua Lv ◽  
Chuan-Wen Jia ◽  
...  

Abstract In order to explore the molecular mechanism of Sarcomyxa edulis response to lignocelluloses degradation, the developmental transcriptomes was analyzed for six stages covering the whole developmental process, including mycelium growing to half bag (B1), mycelium in cold stimulation after full bag (B2), mycelium in primordia appearing (B3), primordia (B4), mycelium at the harvest stage (B5) and mature fruiting body (B6). A total of 6 samples were used for transcriptome sequencing, with three biological replicates. Based on the above transcriptome data, we constructed a co-expression network of weighted genes associated with extracellular enzyme physiological traits by WGCNA, and obtained 19 gene co-expression modules closely related to lignocelluloses degradation. In addition, a number of key genes involved in lignocelluloses degradation pathways were discovered from the four modules with the highest correlation with target traits. These results provide clues for further study on the molecular genetic mechanisms of Sarcomyxa edulis lignocelluloses degradation.


2022 ◽  
Vol 23 (2) ◽  
pp. 597
Author(s):  
Yong Pil Hwang ◽  
Gi Ho Lee ◽  
Thi Hoa Pham ◽  
Mi Yeon Kim ◽  
Chae Yeon Kim ◽  
...  

The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including β-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1β, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1β, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Rania Al-Tohamy ◽  
Jianzhong Sun ◽  
Maha A. Khalil ◽  
Michael Kornaros ◽  
Sameh Samir Ali

Abstract Background The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. Results Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. Conclusion The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production. Graphical Abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sibao Wu ◽  
Rongrong Zhou ◽  
Yuting Ma ◽  
Yong Fang ◽  
Guopai Xie ◽  
...  

Abstract Background Pleurotus ostreatus is an edible mushroom popularly cultivated worldwide. Distilled grain waste (DGW) is a potential substrate for P. ostreatus cultivation. However, components in DGW restrict P. ostreatus mycelial growth. Therefore, a cost-effective approach to facilitate rapid P. ostreatus colonization on DGW substrate will benefit P. ostreatus cultivation and DGW recycling. Results Five dominant indigenous bacteria, Sphingobacterium sp. X1, Ureibacillus sp. X2, Pseudoxanthomonas sp. X3, Geobacillus sp. X4, and Aeribacillus sp. X5, were isolated from DGW and selected to develop a consortium-based microbial agent to compost DGW for P. ostreatus cultivation. Microbial agent inoculation led to faster carbohydrate metabolism, a higher temperature (73.2 vs. 71.2 °C), a longer thermophilic phase (5 vs. 3 days), and significant dynamic changes in microbial community composition and diversity in composts than those of the controls. Metagenomic analysis showed the enhanced microbial metabolisms, such as xenobiotic biodegradation and metabolism and terpenoid and polyketide metabolism, during the mesophilic phase after microbial agent inoculation, which may facilitate the fungal colonization on the substrate. In accordance with the bioinformatic analysis, a faster colonization of P. ostreatus was observed in the composts with microbial inoculation than in control after composting for 48 h, as indicated from substantially higher fungal ergosterol content, faster lignocellulose degradation, and higher lignocellulase activities in the former than in the latter. The final mushroom yield shared no significant difference between composts with microbial inoculation and control, with 0.67 ± 0.05 and 0.60 ± 0.04 kg fresh mushroom/kg DGW, respectively (p > 0.05). Conclusion The consortium-based microbial agent comprised indigenous microorganisms showing application potential in composting DGW for providing substrate for P. ostreatus cultivation and will provide an alternative to facilitate DGW recycling.


2021 ◽  
Author(s):  
Stanislaus Aditya Agung ◽  
Dede Heri Yuli Yanto ◽  
Anja Meryandini ◽  
Titi Candra Sunarti

Abstract Streptomyces genera plays important role in lignocellulose degradation. Many research founds Streptomyces has cellulolytic and ligninolytic enzymes that sufficient to degrade lignocellulosic materials. However, minimum lignocellulosic material condition that can efficiently degraded by Streptomyces sp. has not been fully understood. In this research, three pretreament conditions (physical, alkaline-hydrotermal, and hydrogen-peroxide chemical treatments) of sugarcane bagasse used as lignocellulosic material, to further degraded by Streptomyces sp. S2. Lignocellulose component measurement conclude that raw (physical treated only) bagasse wasn’t efficiently degraded by Streptomyces sp S2. Hydrogen-peroxide was effective on reducing both syringil and guaiacyl lignin, meanwhile alkaline-hydrotermal pretreatment was very effective on reducing syringil lignin. This study suggest that hydrogen-peroxide pretreatment can be used in many type of lignocellulosic material, which can be further degraded by Streptomyces sp. S2. Alkaline-hydrotermal preteatment on the other hand is best suited to degrade lignocellulosic material that have high percentage of syringil lignin.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Mohamad Djali ◽  
Indira Lanti Kayaputri ◽  
Dian Kurniati ◽  
Een Sukarminah ◽  
Inna Muslimah Hanifa Mudjenan ◽  
...  

Lignocellulose can be degraded by lignocellulolytic microorganisms such as moulds. The purpose of the study was to obtain the right type of moulds in degrading lignocellulose on the cocoa shell powder. The study used a completely randomized design method using four treatments of different types of mould (Trichoderma viride, Neurospora sitophila, Aspergillus niger, and Rhizopus oryzae) towards cocoa shell powder fermentation. Solid fermentation of cocoa shell powder was carried out for 5 days in an incubator with a temperature of 30°C for T. viride, N. sitophila, and R. oryzae, while A. niger of 35°C. The fermented substrate was then dried in a cabinet oven with a temperature of 50°C for 4 days. Tests of lignin, cellulose, and hemicellulose were performed towards the treatments by the Chesson method, while the moisture content test was performed using the AOAC method. Degradation of fermented cocoa shell powder has shown a significant effect on moisture, lignin, cellulose, and hemicellulose contents. Trichoderma viride resulted in the highest lignocellulose degradation compared with the other treatments. The percentage decrease of lignin content is up to 46.69 wt%; while cellulose of 22.59 wt%; and hemicellulose is about 19.41 wt% from the initial lignin weight.


2021 ◽  
Author(s):  
Binbin Hua ◽  
Xiaofen Wang ◽  
Zongjun Cui

Abstract Acid-base combination is used in some cases expecially after restricted enrichment, and has created many lignocellulose-degrading communities. While how it worked is not well understood. In this study, compost was used as inoculum source. Induced community structure changes were analyzed with high throughput sequencing to elucidate the formation processes and determine the mechanisms of acid-base combination. We found that after restricted enrichment, retaining primarily bacteria not only included that could decompose and utilize lignocellulose, such as Clostridium and Pseudomonas, but also synergistic microbiota such as Pseudoxanomonas and Alkalobacillaceae. When the proportion of these two types of bacteria was not balanced, the degradation ability of the microbial community was low or pH changes of it did not compound regular changes , which maybe lead to the failure of restricted enrichment. Microbial communities were re-constituted by acid-base combination, whereby the degrading and synergistic strains were adjusted to a more appropriate proportion. Acid-base combination fixed the instability of microbial communities caused by randomness of restrictive screening enrichment. In this study, the mechanism of acid-base combination was analyzed, which enriched the theoretical system of restricted culture, and provided an effective and controllable technical method for obtaining high-quality lignocellulose-degrading microbial community resources.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 482
Author(s):  
Huizhen Yang ◽  
He Zhang ◽  
Huizhen Qiu ◽  
Dominic Kwadwo Anning ◽  
Mengchan Li ◽  
...  

Lignocellulosic materials have a complex physicochemical composition and structure that reduces their decomposition rate and hinders the formation of humic substances during composting. Therefore, a composting experiment was conducted to evaluate the effects of different C/N ratios on lignocellulose (cellulose, hemicellulose and lignin) degradation and the activities of corresponding enzymes during aerobic composting. The study had five C/N ratios, namely, T1 (C/N ratio of 15), T2 (C/N ratio of 20), T3 (C/N ratio of 25), T4 (C/N ratio of 30) and T5 (C/N ratio of 35). The results showed that treatments T3 and T4 had the highest rate of degradation of cellulose and hemicellulose, while treatment T3 had the highest rate of degradation of lignin. Among the five treatments, treatment T3 enhanced the degradation of the lignocellulose constituents, indicating a degradation rate of 6.86–35.17%, 15.63–44.08% and 31.69–165.60% for cellulose, hemicellulose and lignin, respectively. The degradation of cellulose and lignin occurred mainly at the thermophilic and late mesophilic phases of composting, while hemicellulose degradation occurred at the maturation phase. Treatment T3 was the best C/N ratio to stimulate the activities of manganese peroxidase, lignin peroxidase, polyphenol oxidase and peroxidase, which in turn promoted lignocellulose degradation.


Sign in / Sign up

Export Citation Format

Share Document