equilibration time
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 76)

H-INDEX

29
(FIVE YEARS 3)

2022 ◽  
Vol 258 ◽  
pp. 10007
Author(s):  
Sebastian Grieninger ◽  
Sergio Morales-Tejera

We study the real time evolution of the chiral magnetic effect out-ofequilibrium in strongly coupled anomalous field theories. We match the parameters of our model to QCD parameters and draw lessons of possible relevance for the realization of the chiral magnetic effect in heavy ion collisions. In particular, we find an equilibration time of about ~ 0:35 fm/c in presence of the chiral anomaly for plasma temperatures of order T ~ 300 - 400 MeV.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 888
Author(s):  
Raphaela Fritsche-Guenther ◽  
Yoann Gloaguen ◽  
Anna Bauer ◽  
Tobias Opialla ◽  
Stefan Kempa ◽  
...  

Using manual derivatization in gas chromatography-mass spectrometry samples have varying equilibration times before analysis which increases technical variability and limits the number of potential samples analyzed. By contrast, automated derivatization methods can derivatize and inject each sample in an identical manner. We present a fully automated (on-line) derivatization method used for targeted analysis of different matrices. We describe method optimization and compare results from using off-line and on-line derivatization protocols, including the robustness and reproducibility of the methods. Our final parameters for the derivatization process were 20 µL of methoxyamine (MeOx) in pyridine for 60 min at 30 °C followed by 80 µL N-Methyl-N-trimethylsilyltrifluoracetamide (MSTFA) for 30 min at 30 °C combined with 4 h of equilibration time. The repeatability test in plasma and liver revealed a median relative standard deviation (RSD) of 16% and 10%, respectively. Serum samples showed a consistent intra-batch median RSD of 20% with an inter-batch variability of 27% across three batches. The direct comparison of on-line versus off-line demonstrated that on-line was fit for purpose and improves repeatability with a measured median RSD of 11% compared to 17% using the same method off-line. In summary, we recommend that optimized on-line methods may improve results for metabolomics and should be used where available.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Mobolaji M. Jegede ◽  
Olatunde S. Durowoju ◽  
Joshua N. Edokpayi

The continuous degradation of surface water quality by dye materials is of concern globally. Agricultural waste Litchi chinensis (LC) peel in its raw (RL) and modified (CL) forms was used as potential sorbents for sequestration of Congo red (CR) dye from an aqueous solution. The sorbents were characterized before and after sorption with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer, Emmett, and Teller (BET) surface area analysis, and X-ray diffraction (XRD). Determination of the point of zero charge (PZC) suggested CR dye sorption from an aqueous solution would be best in acidic pH. Batch experimental drivers such as the effects of time, dosage, initial concentration, pH, and temperature were optimized and used. Results from the study showed that modification with citric acid (CA) reduced the equilibration time from 90 to 15 min. Change in water chemistry did not significantly affect the removal efficiency of the sorbent but rather slightly improved it for both sorbent types. The smaller particle size of <125 μm recorded higher removal efficiency than the larger one (>125 μm). The effect of temperature affects the sorption differently. For the RL system, it decreases with an increase in the temperature, while for the CL system it increases with an increase in temperature. The Langmuir isotherm best described the equilibrium data obtained based on the linearized coefficients with maximum sorption capacities ( q max ) of 55.56 mg/g (RL) and 58.48 mg/g (CL). The pseudo-second-order model also best described the kinetic data. The thermodynamics study showed that the reaction is both feasible and spontaneous. Both sorbents recorded high removal efficiency for other dyes such as rhodamine B, methylene blue, methyl orange, malachite green, and erythrosin B. The five cycled regeneration/sorption experiments with 0.1 M NaOH as the desorbing agent showed that the regenerated sorbents efficiently removed CR dye from an aqueous solution close to their virgin samples for the first three cycles. This research, therefore, establishes LC peel as a potential eco-friendly, readily available, and effective sorbent for sequestration of hazardous dyes from wastewater.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3835
Author(s):  
Lakshmi Prasanna Lingamdinne ◽  
Janardhan Reddy Koduru ◽  
Yoon-Young Chang ◽  
Mu. Naushad ◽  
Jae-Kyu Yang

Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear. and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO–Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO–Gd were examined. The PGO–Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g−1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo–second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO–Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO–Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2487
Author(s):  
Marinos Xagoraris ◽  
Foteini Chrysoulaki ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
...  

For long heather honey has been a special variety due to its unique organoleptic characteristics. This study aimed to characterize and optimize the isolation of the dominant volatile fraction of Greek autumn heather honey using solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The described approach pointed out 13 main volatile components more closely related to honey botanical origin, in terms of occurrence and relative abundance. These volatiles include phenolic compounds and norisoprenoids, with benzaldehyde, safranal and p-anisaldehyde present in higher amounts, while ethyl 4-methoxybenzoate is reported for the first time in honey. Then, an experimental design was developed based on five numeric factors and one categorical factor and evaluated the optimum conditions (temperature: 60 °C, equilibration time: 30 min extraction time: 15 min magnetic stirrer velocity: 100 rpm sample volume: 6 mL water: honey ratio: 1:3 (v/w)). Additionally, a validation test set reinforces the above methodology investigation. Honey is very complex and variable with respect to its volatile components given the high diversity of the floral source. As a result, customizing the isolation parameters for each honey is a good approach for streamlining the isolation volatile compounds. This study could provide a good basis for future recognition of monofloral autumn heather honey.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3427
Author(s):  
Rachid El Kaim Billah ◽  
Moonis Ali Khan ◽  
Young-Kwon Park ◽  
Amira AM ◽  
Hicham Majdoubi ◽  
...  

Chitosan (Cs)-based composites were developed by incorporating silica (Cs–Si), and both silica and hydroxyapatite (Cs–Si–Hap), comparatively tested to sequester hexavalent (Cr(VI)) ions from water. XRD and FT-IR data affirmed the formation of Cs–Si and Cs–Si–Hap composite. Morphological images exhibits homogeneous Cs–Si surface, decorated with SiO2 nanoparticles, while the Cs–Si–Hap surface was non-homogeneous with microstructures, having SiO2 and Hap nanoparticles. Thermal analysis data revealed excellent thermal stability of the developed composites. Significant influence of pH, adsorbent dose, contact time, temperature, and coexisting anions on Cr(VI) adsorption onto composites was observed. Maximum Cr(VI) uptakes on Cs and developed composites were observed at pH 3. The equilibration time for Cr(VI) adsorption on Cs–Si–Hap was 10 min, comparatively better than Cs and Cs–Si. The adsorption data was fitted to pseudo-second-order kinetic and Langmuir isotherm models with respective maximum monolayer adsorption capacities (qm) of 55.5, 64.4, and 212.8 mg/g for Cs, Cs–Si, and Cs–Si–Hap. Regeneration studies showed that composites could be used for three consecutive cycles without losing their adsorption potential.


Author(s):  
S. Sophie Beulah ◽  
K. Muthukumaran

Discharge of Cr(VI) laden effluents is highly toxic and decontaminating the wastewater from Cr(VI) is necessary for Environmental Protection. An investigation on the adsorption characteristics of activated carbon prepared from neem nut (NNC) for the removal of Cr(VI) from wastewater by varying the parameters such as carbon dose, pH, equilibration time by batch studies was found to be effective for the removal of Cr(VI) from wastewater. Carbon characteristics of activated neem nut carbon were ascertained. Evaluation were done by varying the pH from 1 to 6, carbon dose from 0.1 g to 0.5 g and equilibration time from 1 to 6 hours. Maximum Cr(VI) removal of 95% took place when batch studies were done at an optimal pH of 2, carbon dose of 0.2 g//100mL, and equilibration time of 4 hours. Freundlich and Langmuir adsorption isotherm models were considered for analysis.


2021 ◽  
Vol 25 (9) ◽  
pp. 5219-5235
Author(s):  
Benjamin Gralher ◽  
Barbara Herbstritt ◽  
Markus Weiler

Abstract. The direct vapor equilibration laser spectrometry (DVE-LS) method has been developed for obtaining matrix-bound water stable isotope data in soils, the critical zone, and bedrock, deriving therefrom subsurface water flow and transport processes and, ultimately, characterizing, for example, groundwater recharge and vulnerability. Recently, DVE-LS has been increasingly adopted due to its possible high sample throughput, relative simplicity, and cost-efficiency. However, this has come at the cost of a non-unified standard operation protocol (SOP), and several contradictory suggestions regarding protocol details do exist which have not been resolved to date. Particularly, sample container material and equilibration times have not yet been agreed upon. Beside practical constraints, this often limits DVE-LS applicability to interpreting relative isotope dynamics instead of absolute values. It also prevents data comparability among studies or laboratories, and several previous comparisons of DVE-LS with other, more traditional approaches of water extraction and subsequent stable isotope analysis yielded significant discrepancies for various sample matrices and physical states. In a series of empirical tests, we scrutinized the controversial DVE-LS protocol details. Specifically, we tested 10 different easily available and cost-efficient inflatable bags previously employed or potentially suitable for DVE-LS sample collection and equilibration. In storage tests similar to the DVE-LS equilibration process but lasting several weeks, we quickly found heat-sealed bags made of laminated aluminum (Al) sheets to be superior by several orders of magnitude over more frequently used freezer bags in terms of evaporation safety and accompanying adverse isotope effects. For the first time, Al-laminated bags allow the applied equilibration time to be adapted exclusively to sample requirements instead of accepting reduced data quality in a trade-off with material shortcomings. Based on detailed physical considerations, we further describe how to calculate the minimum available container headspace and sample-contained liquid water volume and how their ratio affects analytical precision and accuracy. We are confident that these guidelines will expand DVE-LS applicability and improve data quality and comparability among studies and laboratories by contributing to a more unified, physically well-founded SOP based on more appropriate components.


2021 ◽  
Vol 411 ◽  
pp. 37-54
Author(s):  
Eric Kwabena Droepenu ◽  
Boon Siong Wee ◽  
Suk Fun Chin ◽  
Kuan Ying Kok

In this study, sorption efficiency of coated (C-) and uncoated (U-) zinc oxide nanoparticles (ZnO-NPs) in aqueous solution onto raw sago hampas (RSH) and acetylated sago hampas (ACSH) was studied. Physical and chemical characteristics of both the sorbate and sorbents were analysed using various characterization techniques. The mechanism of the sorption process was evaluated using equilibrium isotherms, kinetic and thermodynamic studies. From the study, maximum percentage removal of both sorbate ions were achieved at an equilibration time of 100 minutes with an optimum sorbate mass of 2.0 g per 50 ml. The study recorded a maximum % removal of 85.1% & 87.6% for C-and U-ZnO-NPs (< 50 nm) onto RSH and 90.0% & 91.1% onto ACSH. Langmuir isotherm fitted well for the sorption process with the highest efficiency of 0.793 mg/g recorded for C-ZnO-NPs onto RSH. Pseudo-second model best described the sorption process. An exothermic and non-spontaneous sorption process was realised in all the sorption studies except that of U-ZnO-NPs (< 50 nm) onto ACSH which became spontaneous as temperature increased. Based on the findings from the multiple approaches employed, both sorbents could be proposed as viable alternatives to act as a green sorbent in the removal of ZnO-NPs from water and wastewater.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1585
Author(s):  
Marc Conrad ◽  
Irina Smirnova

The processing of large quantities of water in biorefining processes can lead to immense costs for heating, evaporation, and wastewater disposal. These costs may prohibit the exploitation of alternative products, e.g., xylooligosaccharides from straw, which are regarded as too costly. A new counter-current extractions method is proposed that aims at low solvent (water) consumption, as well as high yields and extract concentrations. This process was evaluated with suspension extraction experiments with steam pretreated wheat straw and the process window analysis based on a mass balance for a washing and a leaching scenario. The latter was conducted with two other suspension extraction processes as a comparison. The equilibration time was found to be well below 10 min. While the suspension extraction with and without recycling need to be designed to achieve a high yield or a high concentration and low solvent consumption, the proposed extraction method can reach all three simultaneously. Thus, this new process is evaluated as a potential method to spare water and downstream costs and allow new processing pathways in second-generation biorefineries.


Sign in / Sign up

Export Citation Format

Share Document