magnetic resonance imaging system
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 26)

H-INDEX

25
(FIVE YEARS 3)

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2276
Author(s):  
Rhonira Latif ◽  
Mimiwaty Mohd Noor ◽  
Jumril Yunas ◽  
Azrul Azlan Hamzah

The paper presents a comprehensive review of mechanical energy harvesters and microphone sensors for totally implanted hearing systems. The studies on hearing mechanisms, hearing losses and hearing solutions are first introduced to bring to light the necessity of creating and integrating the in vivo energy harvester and implantable microphone into a single chip. The in vivo energy harvester can continuously harness energy from the biomechanical motion of the internal organs. The implantable microphone executes mechanoelectrical transduction, and an array of such structures can filter sound frequency directly without an analogue-to-digital converter. The revision of the available transduction mechanisms, device configuration structures and piezoelectric material characteristics reveals the advantage of adopting the polymer-based piezoelectric transducers. A dual function of sensing the sound signal and simultaneously harvesting vibration energy to power up its system can be attained from a single transducer. Advanced process technology incorporates polymers into piezoelectric materials, initiating the invention of a self-powered and flexible transducer that is compatible with the human body, magnetic resonance imaging system (MRI) and the standard complementary metal-oxide-semiconductor (CMOS) processes. The polymer-based piezoelectric is a promising material that satisfies many of the requirements for obtaining high performance implantable microphones and in vivo piezoelectric energy harvesters.


Author(s):  
Minlan Yuan ◽  
Hongru Zhu ◽  
Yuchen Li ◽  
Fenfen Ge ◽  
Su Lui ◽  
...  

Abstract Rationale and objectives The hippocampus, especially the CA1, CA3, and dentate gyrus (DG) subfields, is reported to be associated with post-traumatic stress disorder (PTSD) after trauma. However, neuroimaging studies of the associations between PTSD and hippocampal subfield volumes have failed to yield consistent findings. The aim of this study is to examine whether the dopamine D2 receptor (DRD2) Taq1A polymorphism, which is associated with both hippocampal function and PTSD, moderated the association between PTSD severity and hippocampal CA1, CA3 and DG volumes. Methods T1-weighted images were acquired from 142 trauma survivors from the 2008 Wenchuan earthquake using a 3.0-T magnetic resonance imaging system. Hippocampal subfield segmentations were performed with FreeSurfer v6.0. We used the simple moderation model from the PROCESS v3.4 tool for SPSS 23.0 to examine the association between the rs1800497 polymorphism, PTSD severity, and hippocampal CA3 and DG volumes. Results A significant genotype × PTSD symptom severity interaction was found for the left CA3 volume (ΔF = 5.01, p = 0.008, ΔR2 = 0.05). Post hoc, exploratory analyses deconstructing the interaction revealed that severe PTSD symptomatology were associated with reduced left CA3 volume among TC heterozygotes (t =  − 2.86, p = 0.005). Conclusions This study suggests that DRD2 Taq1A polymorphism moderates the association between PTSD symptomatology and left CA3 volume, which promotes an etiological understanding of the hippocampal atrophy at the subfield level. This highlights the complex effect of environmental stress, and provides possible mechanism for the relationship between the dopaminergic system and hippocampal function in PTSD.


2021 ◽  
Vol 51 (5) ◽  
pp. 716-723
Author(s):  
Suraj D. Serai ◽  
Mai-Lan Ho ◽  
Maddy Artunduaga ◽  
Sherwin S. Chan ◽  
Govind B. Chavhan

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Zheng ◽  
Min Li ◽  
Pan Wang ◽  
Xiangnan Li ◽  
Qiang Zhang ◽  
...  

Abstract Background Chronic allograft injury (CAI) is a significant reason for which many grafts were lost. The study was conducted to assess the usefulness of diffusional kurtosis imaging (DKI) technology in the non-invasive assessment of CAI. Methods Between February 2019 and October 2019, 110 renal allograft recipients were included to analyze relevant DKI parameters. According to estimated glomerular filtration rate (eGFR) (mL/min/ 1.73 m2) level, they were divided to 3 groups: group 1, eGFR ≥ 60 (n = 10); group 2, eGFR 30–60 (n = 69); group 3, eGFR < 30 (n = 31). We performed DKI on a clinical 3T magnetic resonance imaging system. We measured the area of interest to determine the mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) of the renal cortex and medulla. We performed a Pearson correlation analysis to determine the relationship between eGFR and the DKI parameters. We used the receiver operating characteristic curve to estimate the predicted values of DKI parameters in the CAI evaluation. We randomly selected five patients from group 2 for biopsy to confirm CAI. Results With the increase of creatinine, ADC, and MD of the cortex and medulla decrease, MK of the cortex and medulla gradually increase. Among the three different eGFR groups, significant differences were found in cortical and medullary MK (P = 0.039, P < 0.001, P < 0.001, respectively). Cortical and medullary ADC and MD are negatively correlated with eGFR (r = − 0.49, − 0.44, − 0.57, − 0.57, respectively; P < 0.001), while cortical and medullary MK are positively correlated with eGFR (r = 0.42, 0.38; P < 0.001). When 0.491 was set as the cutoff value, MK's CAI assessment showed 87% sensitivity and 100% specificity. All five patients randomly selected for biopsy from the second group confirmed glomerulosclerosis and tubular atrophy/interstitial fibrosis. Conclusion The DKI technique is related to eGFR as allograft injury progresses and is expected to become a potential non-invasive method for evaluating CAI.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199347
Author(s):  
Romulo V de Oliveira ◽  
João S Pereira

Background Diffusion tensor imaging has emerged as a promising tool for quantitative analysis of neuronal damage in Parkinson disease, with potential value for diagnostic and prognostic evaluation. Purpose The aim of this study was to examine Parkinson disease-associated alterations in specific brain regions revealed by diffusion tensor imaging and how such alterations correlate with clinical variables. Material and Methods Diffusion tensor imaging was performed on 42 Parkinson disease patients and 20 healthy controls with a 1.5-T scanner. Manual fractional anisotropy measurements were performed for the ventral, intermediate, and dorsal portions of the substantia nigra, as well as for the cerebral peduncles, putamen, thalamus, and supplementary motor area. The correlation analysis between these measurements and the clinical variables was performed using χ2 variance and multiple linear regression. Results Compared to healthy controls, Parkinson disease patients had significantly reduced fractional anisotropy values in the substantia nigra ( P < .05). Some fractional anisotropy measurements in the substantia nigra correlated inversely with duration of Parkinson disease and Parkinson disease severity scores. Reduced fractional anisotropy values in the substantia nigra were also correlated inversely with age variable. fractional anisotropy values obtained for the right and left putamen varied significantly between males and females in both groups. Conclusion Manual fractional anisotropy measurements in the substantia nigra were confirmed to be feasible with a 1.5-T scanner. Diffusion tensor imaging data can be used as a reliable biomarker of Parkinson disease that can be used to support diagnosis, prognosis, and progression/treatment monitoring.


2021 ◽  
Author(s):  
Steve Alejandro Avendaño García ◽  
Rodrigo Alfonso Martín Salas ◽  
Jaime Fabian Vázquez de la Rosa ◽  
Sergio Enrique Solis Nájera ◽  
Alfredo Odón Rodríguez González

Sign in / Sign up

Export Citation Format

Share Document