envelope gene
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 57)

H-INDEX

57
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
Author(s):  
Julie Niemann Holm-Jacobsen ◽  
Caspar Bundgaard-Nielsen ◽  
Louise Søndergaard Rold ◽  
Ann-Maria Jensen ◽  
Shakil Shakar ◽  
...  

Background: SARS-CoV-2 has resulted in a global pandemic since its outbreak in Wuhan, 2019. Virus transmission primarily occurs through close contact, respiratory droplets, and aerosol particles. However, since SARS-CoV-2 has been detected in fecal and rectal samples from infected individuals, the fecal-oral route has been suggested as another potential route of transmission. This study aimed to investigate the prevalence and clinical implications of rectal SARS-CoV-2 shedding in Danish COVID-19 patients.Methods: Hospitalized and non-hospitalized adults and children who were recently tested with a pharyngeal COVID-19 test, were included in the study. A rectal swab was collected from all participants. Hospitalized adults and COVID-19 positive children were followed with both pharyngeal and rectal swabs until two consecutive negative results were obtained. RT-qPCR targeting the envelope gene was used to detect SARS-CoV-2 in the samples. Demographic, medical, and biochemical information was obtained through questionnaires and medical records.Results: Twenty-eight of 52 (53.8%) COVID-19 positive adults and children were positive for SARS-CoV-2 in rectal swabs. Seven of the rectal positive participants were followed for more than 6 days. Two of these (28.6%) continued to test positive in their rectal swabs for up to 29 days after the pharyngeal swabs had turned negative. Hospitalized rectal positive and rectal negative adults were comparable regarding demographic, medical, and biochemical information. Furthermore, no difference was observed in the severity of the disease among the two groups.Conclusions: We provided evidence of rectal SARS-CoV-2 shedding in Danish COVID-19 patients. The clinical importance of rectal SARS-CoV-2 shedding appears to be minimal.


2021 ◽  
Vol 15 (12) ◽  
pp. e0009970
Author(s):  
Shaowei Sang ◽  
Qiyong Liu ◽  
Xiaofang Guo ◽  
De Wu ◽  
Changwen Ke ◽  
...  

Introduction Dengue has become a more serious human health concern in China, with increased incidence and expanded outbreak regions. The knowledge of the cross-sectional and longitudinal epidemiological characteristics and the evolutionary dynamics of dengue in high-risk areas of China is limited. Methods Records of dengue cases from 2013 to 2016 were obtained from the China Notifiable Disease Surveillance System. Full envelope gene sequences of dengue viruses detected from the high-risk areas of China were collected. Maximum Likelihood tree and haplotype network analyses were conducted to explore the phylogenetic relationship of viruses from high-risk areas of China. Results A total of 56,520 cases was reported in China from 2013 to 2016. During this time, Yunnan, Guangdong and Fujian provinces were the high-risk areas. Imported cases occurred almost year-round, and were mainly introduced from Southeast Asia. The first indigenous case usually occurred in June to August, and the last one occurred before December in Yunnan and Fujian provinces but in December in Guangdong Province. Seven genotypes of DENV 1–3 were detected in the high-risk areas, with DENV 1-I the main genotype and DENV 2-Cosmopolitan the secondary one. The Maximum Likelihood trees show that almost all the indigenous viruses separated into different clusters. DENV 1-I viruses were found to be clustered in Guangdong Province, but not in Fujian and Yunnan, from 2013 to 2015. The ancestors of the Guangdong viruses in the cluster in 2013 and 2014 were most closely related to strains from Thailand or Singapore, and the Guangdong virus in 2015 was most closely related to the Guangdong virus of 2014. Based on closest phylogenetic relationships, viruses from Myanmar possibly initiated further indigenous cases in Yunnan, those from Indonesia in Fujian, while viruses from Thailand, Malaysia, Singapore and Indonesia were predominant in Guangdong Province. Conclusions Dengue is still an imported disease in China, although some genotypes continued to circulate in successive years. Viral phylogenies based on the envelope gene suggested periodic introductions of dengue strains into China, primarily from Southeast Asia, with occasional sustained, multi-year transmission in some regions of China.


2021 ◽  
Vol 12 (4) ◽  
pp. 967-977
Author(s):  
Ntombikhona F. Maphumulo ◽  
Michelle L. Gordon

An increasing number of patients in Africa are experiencing virological failure on a second-line antiretroviral protease inhibitor (PI)-containing regimen, even without resistance-associated mutations in the protease region, suggesting a potential role of other genes in PI resistance. Here, we investigated the prevalence of mutations associated with Lopinavir/Ritonavir (LPV/r) failure in the Envelope gene and the possible coevolution with mutations within the Gag-protease (gag-PR) region. Env and Gag-PR sequences generated from 24 HIV-1 subtype C infected patients failing an LPV/r inclusive treatment regimen and 344 subtype C drug-naïve isolates downloaded from the Los Alamos Database were analyzed. Fisher’s exact test was used to determine the differences in mutation frequency. Bayesian network probability was applied to determine the relationship between mutations occurring within the env and gag-PR regions and LPV/r treatment. Thirty-five mutations in the env region had significantly higher frequencies in LPV/r-treated patients. A combination of Env and Gag-PR mutations was associated with a potential pathway to LPV/r resistance. While Env mutations were not directly associated with LPV/r resistance, they may exert pressure through the Gag and minor PR mutation pathways. Further investigations using site-directed mutagenesis are needed to determine the impact of Env mutations alone and in combination with Gag-PR mutations on viral fitness and LPV/r efficacy.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2501
Author(s):  
Steven J. Smith ◽  
Andrea Ferris ◽  
Xuezhi Zhao ◽  
Gary Pauly ◽  
Joel P. Schneider ◽  
...  

Integrase strand transfer inhibitors (INSTIs) are a class of antiretroviral compounds that prevent the insertion of a DNA copy of the viral genome into the host genome by targeting the viral enzyme integrase (IN). Dolutegravir (DTG) is a leading INSTI that is given, usually in combination with nucleoside reverse transcriptase inhibitors (NRTIs), to treat HIV-1 infections. The emergence of resistance to DTG and other leading INSTIs is rare. However, there are recent reports suggesting that drug resistance mutations can occur at positions outside the integrase gene either in the HIV-1 polypurine tract (PPT) or in the envelope gene (env). Here, we used single round infectivity assays to measure the antiviral potencies of several FDA-approved INSTIs and non-nucleoside reverse transcriptase inhibitors (NNRTIs) against a panel of HIV-1 PPT mutants. We also tested several of our promising INSTIs and NNRTIs in these assays. No measurable loss in potency was observed for either INSTIs or NNRTIs against the HIV-1 PPT mutants. This suggests that HIV-1 PPT mutants are not able, by themselves, to confer resistance to INSTIs or NNRTIs.


Author(s):  
Merlin Davies ◽  
Laura R. Bramwell ◽  
Nicola Jeffery ◽  
Ben Bunce ◽  
Ben P. Lee ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yushen Jiang ◽  
Shanming Zhang ◽  
Hong Qin ◽  
Shuai Meng ◽  
Xuyi Deng ◽  
...  

Abstract Background The outbreak of novel coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern. Quantitative testing of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus is demanded in evaluating the efficacy of antiviral drugs and vaccines and RT-PCR can be widely deployed in the clinical assay of viral loads. Here, we developed a quantitative RT-PCR method for SARS-CoV-2 virus detection in this study. Methods RT-PCR kits targeting E (envelope) gene, N (nucleocapsid) gene and RdRP (RNA-dependent RNA polymerase) gene of SARS-CoV-2 from Roche Diagnostics were evaluated and E gene kit was employed for quantitative detection of COVID-19 virus using Cobas Z480. Viral load was calculated according to the standard curve established by series dilution of an E-gene RNA standard provided by Tib-Molbiol (a division of Roche Diagnostics). Assay performance was evaluated. Results The performance of the assay is acceptable with limit of detection (LOD) below 10E1 copies/μL and lower limit of quantification (LLOQ) as 10E2 copies/μL. Conclusion A quantitative detection of the COVID-19 virus based on RT-PCR was established.


2021 ◽  
Author(s):  
Liyun Jiang ◽  
Yuan Liu ◽  
Wenzhe Su ◽  
Yimin Cao ◽  
Qinlong Jing ◽  
...  

Abstract Objectives The dengue epidemic in Guangzhou has imposed a rising burden on society and health infrastructure. Here we present the genotype data for dengue virus serotype 2 (DENV-2) to improve the understanding of dengue epidemic. Methods We sequenced the envelope gene of DENV-2 obtained from patient serum sample, and subsequently performed the maximum-likelihood phylogenetic analysis using PhyMLv3.1, the maximum clade credibility analysis using BEAST v.1.10.4 and selection pressure analysis using Datamonkey 2.0 . Results The DENV-2 prevalent in Guangzhou region related to the strains of Southeast Asian countries.Our results suggest that the Malaysia/Indian subcontinent genotype is prevalent in Guangzhou and no genotype shift has occurred during the last 20 years. Episodic positive selection was detected at one site. Conclusions Prevention and monitoring imported cases are important for local control. The shift between the lineages of the Malaysia/Indian subcontinent genotype, which originated at different time points, may be the underlying cause of rising DENV-2 cases in Guangzhou.The low rate of dengue haemorrhagic fever in Guangzhou may be explained by the dominance of the less virulent Malaysia/Indian subcontinent genotype.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009860
Author(s):  
Huguette Simo Tchetgna ◽  
Francine Sado Yousseu ◽  
Basile Kamgang ◽  
Armel Tedjou ◽  
Philip J. McCall ◽  
...  

Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using RT-PCR on fragments of the 5’ and 3’ UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1847
Author(s):  
Naveen Kumar ◽  
Rahul Kaushik ◽  
Chandana Tennakoon ◽  
Vladimir N. Uversky ◽  
Anamika Mishra ◽  
...  

Many viruses that cause serious diseases in humans and animals, including the betacoronaviruses (beta-CoVs), such as SARS-CoV, MERS-CoV, and the recently identified SARS-CoV-2, have natural reservoirs in bats. Because these viruses rely entirely on the host cellular machinery for survival, their evolution is likely to be guided by the link between the codon usage of the virus and that of its host. As a result, specific cellular microenvironments of the diverse hosts and/or host tissues imprint peculiar molecular signatures in virus genomes. Our study is aimed at deciphering some of these signatures. Using a variety of genetic methods we demonstrated that trends in codon usage across chiroptera-hosted CoVs are collaboratively driven by geographically different host-species and temporal-spatial distribution. We not only found that chiroptera-hosted CoVs are the ancestors of SARS-CoV-2, but we also revealed that SARS-CoV-2 has the codon usage characteristics similar to those seen in CoVs infecting the Rhinolophus sp. Surprisingly, the envelope gene of beta-CoVs infecting Rhinolophus sp., including SARS-CoV-2, had extremely high CpG levels, which appears to be an evolutionarily conserved trait. The dissection of the furin cleavage site of various CoVs infecting hosts revealed host-specific preferences for arginine codons; however, arginine is encoded by a wider variety of synonymous codons in the murine CoV (MHV-A59) furin cleavage site. Our findings also highlight the latent diversity of CoVs in mammals that has yet to be fully explored.


2021 ◽  
Author(s):  
Yi Zheng ◽  
Yu-Yong Zhou ◽  
Chun-Xia Chai ◽  
San-Jie Cao ◽  
Qi-Gui Yan ◽  
...  

Abstract Background Japanese encephalitis (JE) is an important zoonotic disease caused by Japanese encephalitis virus (JEV), and pigs are intermediate host of this disease. Previous studies have confirmed that JEV can proliferate in the respiratory tract of mice and spread through it. Therefore, this study aimed to screen the proteins interacting with JEV on porcine alveolar macrophage cell and verify its role in the proliferation of JEV.Methods and results Porcine alveolar macrophages cell line 3D4/21 were infected with JEV, and obvious cytopathic effect (CPE) was observed. Zinc finger and BTB domain containing 38 (ZBTB38) was screened out as an interacting protein using co-immunoprecipitation assay and validated through knockout and overexpression of ZBTB38 in 3D4/21 cells. The results demonstrated that loss of ZBTB38 function basically had no effect on the attachment and entry processes of JEV, while the transcription level of JEV envelope gene, the expression level of NS3 protein and the number of virions were all significantly down-regulated in the subsequent infection stage. Conclusion Overall, one core conclusion was drawn in this paper that ZBTB38 promotes the proliferation of JEV especially in the middle and late stages of infection. This study provides new information for understanding the pathogenic mechanism of JEV, especially the respiratory transmission caused by JEV infection.


Sign in / Sign up

Export Citation Format

Share Document