artificial noise
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 209)

H-INDEX

37
(FIVE YEARS 7)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Ryo Kurihara ◽  
Aitaro Kato ◽  
Sumito Kurata ◽  
Hiromichi Nagao

AbstractThe matched filter technique is often used to detect microearthquakes such as deep low-frequency (DLF) earthquakes. It compares correlation coefficients (CC) between waveforms of template earthquakes and the observed data. Conventionally, the sum of CC at multiple seismic stations is used as an index to detect the DLF earthquakes. A major disadvantage of the conventional method is drastically reduced detection accuracy when there are too few seismic stations. The new matched filter method proposed in this study can accurately detect microearthquakes using only a single station. It adopts mutual information (MI) in addition to CC to measure the similarity between the template and target waveforms. The method uses the product of MI and CC (MICC) as an index to detect DLF earthquakes. This index shows a distinct peak corresponding to an earthquake signal in a synthetic data set consisting of artificial noise and the waveform of a DLF earthquake. Application of this single-station method to field observations of Kirishima volcano, one of the most active volcanoes in Japan, detected a total of 354 events from the data in December 2010, whereas the catalog of the Japan Meteorological Agency shows only two. Of the detected events, 314 (89%) are likely DLF earthquakes and other events may be false detections. Most of the false detections correspond to surface-wave arrivals from teleseismic events. The catalog of DLF earthquakes constructed here shows similar temporal behavior to that found by the conventional matched filter method using the sum of the CC of the six stations near the volcano. These results suggest that the proposed method can greatly contribute to the accurate cataloging of DLF earthquakes using only a single seismic station. Graphical Abstract


2021 ◽  
Vol 26 (6) ◽  
pp. 507-512
Author(s):  
Wenjian LU ◽  
Sanjun LIU ◽  
Guohong LAI

This paper presents a design scheme of wire-line telephone system using self-interference (SI) cancellation technology in co-frequency co-time full-duplex (CCFD) system to realize absolute secure communication at the physical layer. This scheme can hide the target signal by skillfully releasing the high-power artificial noise to the whole link at the receiving node, and then make use of the receiver’s knowledge of the SI signal to achieve high dB SI cancellation with the help of analog domain SI cancellation technology in CCFD domain, so that the signal-to-noise ratio (SNR) received by the eavesdropper at any position of the link is far lower than that of the legitimate receiver, so as to realize the absolutely secure communication in the sense of Wyner principle. This paper not only puts forward the specific design scheme of absolutely secure communication telephone, but also analyzes the calculation of security capacity under different eavesdropping positions, different SI cancellation capability and different system parameters according to Shannon theory.


2021 ◽  
Author(s):  
Milad Tatar Mamaghani ◽  
Yi Hong

<div>Unmanned aerial vehicles (UAVs) are envisioned to be extensively employed for assisting wireless communications in Internet of Things (IoT). </div><div>On the other hand, terahertz (THz) enabled intelligent reflecting surface (IRS) is expected to be one of the core enabling technologies for forthcoming beyond-5G wireless communications that promise a broad range of data-demand applications. In this paper, we propose a UAV-mounted IRS (UIRS) communication system over THz bands for confidential data dissemination from an access point (AP) towards multiple ground user equipments (UEs) in IoT networks. Specifically, the AP intends to send data to the scheduled UE, while unscheduled UEs may behave as potential adversaries. To protect information messages and the privacy of the scheduled UE, we aim to devise an energy-efficient multi-UAV covert communication scheme, where the UIRS is for reliable data transmissions, and an extra UAV is utilized as a cooperative jammer generating artificial noise (AN) to degrade unscheduled UEs detection, improving communication covertness.</div><div>This poses a novel max-min optimization problem in terms of minimum average energy efficiency (mAEE), targetting to improve covert throughput and reduce UAVs' propulsion energy consumption subject to some practical constraints such as covertness which is determined analytically. Since the optimization problem is non-convex, we tackle it via the block successive convex approximation (BSCA) approach to iteratively solve a sequence of approximated convex sub-problems, designing the binary user scheduling, AP's power allocation, maximum AN jamming power, IRS beamforming, and both UAVs' trajectory and velocity planning. Finally, we present a low-complex overall algorithm for system performance enhancement with complexity and convergence analysis. Numerical results are provided to verify our analysis and demonstrate significant outperformance of our design over other existing benchmark schemes.</div>


2021 ◽  
Author(s):  
Milad Tatar Mamaghani ◽  
Yi Hong

<div>Unmanned aerial vehicles (UAVs) are envisioned to be extensively employed for assisting wireless communications in Internet of Things (IoT). </div><div>On the other hand, terahertz (THz) enabled intelligent reflecting surface (IRS) is expected to be one of the core enabling technologies for forthcoming beyond-5G wireless communications that promise a broad range of data-demand applications. In this paper, we propose a UAV-mounted IRS (UIRS) communication system over THz bands for confidential data dissemination from an access point (AP) towards multiple ground user equipments (UEs) in IoT networks. Specifically, the AP intends to send data to the scheduled UE, while unscheduled UEs may behave as potential adversaries. To protect information messages and the privacy of the scheduled UE, we aim to devise an energy-efficient multi-UAV covert communication scheme, where the UIRS is for reliable data transmissions, and an extra UAV is utilized as a cooperative jammer generating artificial noise (AN) to degrade unscheduled UEs detection, improving communication covertness.</div><div>This poses a novel max-min optimization problem in terms of minimum average energy efficiency (mAEE), targetting to improve covert throughput and reduce UAVs' propulsion energy consumption subject to some practical constraints such as covertness which is determined analytically. Since the optimization problem is non-convex, we tackle it via the block successive convex approximation (BSCA) approach to iteratively solve a sequence of approximated convex sub-problems, designing the binary user scheduling, AP's power allocation, maximum AN jamming power, IRS beamforming, and both UAVs' trajectory and velocity planning. Finally, we present a low-complex overall algorithm for system performance enhancement with complexity and convergence analysis. Numerical results are provided to verify our analysis and demonstrate significant outperformance of our design over other existing benchmark schemes.</div>


Author(s):  
Thomas Hegghammer

AbstractOptical Character Recognition (OCR) can open up understudied historical documents to computational analysis, but the accuracy of OCR software varies. This article reports a benchmarking experiment comparing the performance of Tesseract, Amazon Textract, and Google Document AI on images of English and Arabic text. English-language book scans (n = 322) and Arabic-language article scans (n = 100) were replicated 43 times with different types of artificial noise for a corpus of 18,568 documents, generating 51,304 process requests. Document AI delivered the best results, and the server-based processors (Textract and Document AI) performed substantially better than Tesseract, especially on noisy documents. Accuracy for English was considerably higher than for Arabic. Specifying the relative performance of three leading OCR products and the differential effects of commonly found noise types can help scholars identify better OCR solutions for their research needs. The test materials have been preserved in the openly available “Noisy OCR Dataset” (NOD) for reuse in future benchmarking studies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rizwana Zulfiqar ◽  
Fiaz Majeed ◽  
Rizwana Irfan ◽  
Hafiz Tayyab Rauf ◽  
Elhadj Benkhelifa ◽  
...  

Respiratory sound (RS) attributes and their analyses structure a fundamental piece of pneumonic pathology, and it gives symptomatic data regarding a patient's lung. A couple of decades back, doctors depended on their hearing to distinguish symptomatic signs in lung audios by utilizing the typical stethoscope, which is usually considered a cheap and secure method for examining the patients. Lung disease is the third most ordinary cause of death worldwide, so; it is essential to classify the RS abnormality accurately to overcome the death rate. In this research, we have applied Fourier analysis for the visual inspection of abnormal respiratory sounds. Spectrum analysis was done through Artificial Noise Addition (ANA) in conjunction with different deep convolutional neural networks (CNN) to classify the seven abnormal respiratory sounds—both continuous (CAS) and discontinuous (DAS). The proposed framework contains an adaptive mechanism of adding a similar type of noise to unhealthy respiratory sounds. ANA makes sound features enough reach to be identified more accurately than the respiratory sounds without ANA. The obtained results using the proposed framework are superior to previous techniques since we simultaneously considered the seven different abnormal respiratory sound classes.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Irfan Muhammad ◽  
Hirley Alves ◽  
Onel Alcaraz López ◽  
Matti Latva-aho

The Internet of Things (IoT) facilitates physical things to detect, interact, and execute activities on-demand, enabling a variety of applications such as smart homes and smart cities. However, it also creates many potential risks related to data security and privacy vulnerabilities on the physical layer of cloud-based Internet of Things (IoT) networks. These can include different types of physical attacks such as interference, eavesdropping, and jamming. As a result, quality-of-service (QoS) provisioning gets difficult for cloud-based IoT. This paper investigates the statistical QoS provisioning of a four-node cloud-based IoT network under security, reliability, and latency constraints by relying on the effective capacity model to offer enhanced QoS for IoT networks. Alice and Bob are legitimate nodes trying to communicate with secrecy in the considered scenario, while an eavesdropper Eve overhears their communication. Meanwhile, a friendly jammer, which emits artificial noise, is used to degrade the wiretap channel. By taking advantage of their multiple antennas, Alice implements transmit antenna selection, while Bob and Eve perform maximum-ratio combining. We further assume that Bob decodes the artificial noise perfectly and thus removes its contribution by implementing perfect successive interference cancellation. A closed-form expression for an alternative formulation of the outage probability, conditioned upon the successful transmission of a message, is obtained by considering adaptive rate allocation in an ON-OFF transmission. The data arriving at Alice’s buffer are modeled by considering four different Markov sources to describe different IoT traffic patterns. Then, the problem of secure throughput maximization is addressed through particle swarm optimization by considering the security, latency, and reliability constraints. Our results evidence the considerable improvements on the delay violation probability by increasing the number of antennas at Bob under strict buffer constraints.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1670
Author(s):  
Hyundoo Jeong ◽  
Sungtae Shin ◽  
Hong-Gi Yeom

Single-cell sequencing provides novel means to interpret the transcriptomic profiles of individual cells. To obtain in-depth analysis of single-cell sequencing, it requires effective computational methods to accurately predict single-cell clusters because single-cell sequencing techniques only provide the transcriptomic profiles of each cell. Although an accurate estimation of the cell-to-cell similarity is an essential first step to derive reliable single-cell clustering results, it is challenging to obtain the accurate similarity measurement because it highly depends on a selection of genes for similarity evaluations and the optimal set of genes for the accurate similarity estimation is typically unknown. Moreover, due to technical limitations, single-cell sequencing includes a larger number of artificial zeros, and the technical noise makes it difficult to develop effective single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm that can accurately predict single-cell clusters in large-scale single-cell sequencing by effectively reducing the zero-inflated noise and accurately estimating the cell-to-cell similarities. First, we construct an ensemble similarity network based on different similarity estimates, and reduce the artificial noise using a random walk with restart framework. Finally, starting from a larger number small size but highly consistent clusters, we iteratively merge a pair of clusters with the maximum similarities until it reaches the predicted number of clusters. Extensive performance evaluation shows that the proposed single-cell clustering algorithm can yield the accurate single-cell clustering results and it can help deciphering the key messages underlying complex biological mechanisms.


Sign in / Sign up

Export Citation Format

Share Document