osteosarcoma cell
Recently Published Documents


TOTAL DOCUMENTS

1552
(FIVE YEARS 465)

H-INDEX

61
(FIVE YEARS 10)

2022 ◽  
Vol 16 ◽  
pp. 101289
Author(s):  
Yao Lu ◽  
Gaolu Cao ◽  
Haiying Lan ◽  
Hua Liao ◽  
Yaqiong Hu ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Zhongpei Zhu ◽  
Min Zhang ◽  
Weidong Wang ◽  
Peng Zhang ◽  
Yuqiang Wang ◽  
...  

Background: The alterations in metabolic profile of tumors have been identified as one of the prognostic hallmarks of cancers, including osteosarcoma. These alterations are majorly controlled by groups of metabolically active genes. However, the regulation of metabolic gene signatures in tumor microenvironment of osteosarcoma has not been well explained.Objectives: Thus, we investigated the sets of previously published metabolic genes in osteosarcoma patients and normal samples.Methods: We applied computational techniques to identify metabolic genes involved in the immune function of tumor microenvironment (TME) and survival and prognosis of the osteosarcoma patients. Potential candidate gene PAICS (phosphoribosyl aminoimidazole carboxylase, phosphoribosyl aminoimidazole succino carboxamide synthetase) was chosen for further studies in osteosarcoma cell lines for its role in cell proliferation, migration and apoptosis.Results: Our analyses identified a list of metabolic genes differentially expressed in osteosarcoma tissues. Next, we scrutinized the list of genes correlated with survival and immune cells, followed by clustering osteosarcoma patients into three categories: C1, C2, and C3. These analyses led us to choose PAICS as potential candidate gene as its expression showed association with poor survival and negative correlation with the immune cells. Furthermore, we established that loss of PAICS induced apoptosis and inhibited proliferation, migration, and wound healing in HOS and MG-63 cell lines. Finally, the results were supported by constructing and validating a prediction model for prognosis of the osteosarcoma patients.Conclusion: Here, we conclude that metabolic genes specifically PAICS play an integral role in the immune cell infiltration in osteosarcoma TME, as well as cancer development and metastasis.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 373
Author(s):  
Chiang-Wen Lee ◽  
Cathy Chia-Yu Huang ◽  
Miao-Ching Chi ◽  
Kuan-Han Lee ◽  
Kuo-Ti Peng ◽  
...  

Osteosarcoma, a primary bone tumor, responds poorly to chemotherapy and radiation therapy in children and young adults; hence, as the basis for an alternative treatment, this study investigated the cytotoxic and antiproliferative effects of naringenin on osteosarcoma cell lines, HOS and U2OS, by using cell counting kit-8 and colony formation assays. DNA fragmentation and the increase in the G2/M phase in HOS and U2OS cells upon treatment with various naringenin concentrations were determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Annexin V/propidium iodide double staining, respectively. Flow cytometry was performed, and 2′,7′-dichlorodihydrofluorescein diacetate, JC-1, and Fluo-4 AM ester probes were examined for reactive oxygen species (ROS) generation, mitochondrial membrane potential, and intracellular calcium levels, respectively. Caspase activation, cell cycle, cytosolic and mitochondrial, and autophagy-related proteins were determined using with western blotting. The results indicated that naringenin significantly inhibited the viability and proliferation of osteosarcoma cells in a dose-dependent manner. In addition, naringenin induced cell cycle arrest in osteosarcoma cells by inhibiting cyclin B1 and cyclin-dependent kinase 1 expression and upregulating p21 expression. Furthermore, naringenin significantly inhibited the growth of osteosarcoma cells by increasing the intracellular ROS level. Naringenin induced endoplasmic reticulum (ER) stress-mediated apoptosis through the upregulation of ER stress markers, GRP78 and GRP94. Naringenin caused acidic vesicular organelle formation and increased autophagolysosomes, microtubule-associated protein-light chain 3-II protein levels, and autophagy. The findings suggest that the induction of cell apoptosis, cell cycle arrest, and autophagy by naringenin through mitochondrial dysfunction, ROS production, and ER stress signaling pathways contribute to the antiproliferative effect of naringenin on osteosarcoma cells.


BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 699-709
Author(s):  
FEI ZHANG ◽  
JIANZHONG LAI ◽  
RONGHAN HE ◽  
YI SHI ◽  
KUN XU ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
pp. 484
Author(s):  
Liang-Tsai Yeh ◽  
Chiao-Wen Lin ◽  
Ko-Hsiu Lu ◽  
Yi-Hsien Hsieh ◽  
Chao-Bin Yeh ◽  
...  

Osteosarcoma is a highly common malignant bone tumor. Its highly metastatic properties are the leading cause of mortality for cancer. Niclosamide, a salicylanilide derivative, is an oral antihelminthic drug of known anticancer potential. However, the effect of niclosamide on osteosarcoma cell migration, invasion and the mechanisms underlying have not been fully clarified. Therefore, this study investigated niclosamide’s underlying pathways and antimetastatic effects on osteosarcoma. In this study, U2OS and HOS osteosarcoma cell lines were treated with niclosamide and then subjected to assays for determining cell migration ability. The results indicated that niclosamide, at concentrations of up to 200 nM, inhibited the migration and invasion of human osteosarcoma U2OS and HOS cells and repressed the transforming growth factor beta-induced protein (TGFBI) expression of U2OS cells, without cytotoxicity. After TGFBI knockdown occurred, cellular migration and invasion behaviors of U2OS cells were significantly reduced. Moreover, niclosamide significantly decreased the phosphorylation of ERK1/2 in U2OS cells and the combination treatment of the MEK inhibitor (U0126) and niclosamide resulted in the intensive inhibition of the TGFBI expression and the migratory ability in U2OS cells. Therefore, TGFBI derived from osteosarcoma cells via the ERK pathway contributed to cellular migration and invasion and niclosamide inhibited these processes. These findings indicate that niclosamide may be a powerful preventive agent against the development and metastasis of osteosarcoma.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 211
Author(s):  
Luis Alberto Bravo Vázquez ◽  
Mariana Yunuen Moreno Becerril ◽  
Erick Octavio Mora Hernández ◽  
Gabriela García de León Carmona ◽  
María Emilia Aguirre Padilla ◽  
...  

MicroRNAs (miRNAs) are a class of small (20–24 nucleotides), highly conserved, non-coding RNA molecules whose main function is the post-transcriptional regulation of gene expression through sequence-specific manners, such as mRNA degradation or translational repression. Since these key regulatory molecules are implicated in several biological processes, their altered expression affects the preservation of cellular homeostasis and leads to the development of a wide range of pathologies. Over the last few years, relevant investigations have elucidated that miRNAs participate in different stages of bone growth and development. Moreover, the abnormal expression of these RNA molecules in bone cells and tissues has been significantly associated with the progression of numerous bone diseases, including osteoporosis, osteosarcoma, osteonecrosis and bone metastasis, among others. In fact, miRNAs regulate multiple pathological mechanisms, including altering either osteogenic or osteoblast differentiation, metastasis, osteosarcoma cell proliferation, and bone loss. Therefore, in this present review, aiming to impulse the research arena of the biological implications of miRNA transcriptome in bone diseases and to explore their potentiality as a theragnostic target, we summarize the recent findings associated with the clinical significance of miRNAs in these ailments.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuxin Fu ◽  
Lun Fang ◽  
Qipu Yin ◽  
Qi Wu ◽  
Wei Sui ◽  
...  

Purpose. A number of studies have discovered various roles of PAK4 in human tumors, including osteosarcoma. However, the exact role of PAK4 in osteosarcoma and its mechanism have yet to be determined. Therefore, this study focused on interrogating the PAK4 effect on the proliferation and migration ability of osteosarcoma and its underlying mechanisms. Materials and Methods. Western blot and QRT-PCR were utilized to quantify the PAK4 relative protein and mRNA levels. To measure cellular viability and mobility, the MTT and wound-healing assays were preferred. Results. With the adenovirus-mediated overexpression of PAK4, the proliferation and migration of U2-OS and MG-63 osteosarcoma cells were stimulated. Furthermore, a liposome-mediated knockout of PAK4 will inhibit osteosarcoma cells from proliferating. In terms of mechanism, we observed the positive correlation of PAK4 expression with expression of P21, CyclinD1, CyclinE1, CDK2, and CDK6, which drives G0/G1 to the G2/M phase transition. PAK4 can also activate Erk expression in OS cells and induce EMT. Conclusion. Interfering with PAK4 protein expression has been shown to affect osteosarcoma proliferation and migration.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yubao Gong ◽  
Chen Yang ◽  
Zhengren Wei ◽  
Jianguo Liu

Abstract To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Gerardo Della Sala ◽  
Consiglia Pacelli ◽  
Francesca Agriesti ◽  
Ilaria Laurenzana ◽  
Francesco Tucci ◽  
...  

Defining the metabolic phenotypes of cancer-initiating cells or cancer stem cells and of their differentiated counterparts might provide fundamental knowledge for improving or developing more effective therapies. In this context we extensively characterized the metabolic profiles of two osteosarcoma-derived cell lines, the 3AB-OS cancer stem cells and the parental MG-63 cells. To this aim Seahorse methodology-based metabolic flux analysis under a variety of conditions complemented with real time monitoring of cell growth by impedentiometric technique and confocal imaging were carried out. The results attained by selective substrate deprivation or metabolic pathway inhibition clearly show reliance of 3AB-OS on glycolysis and of MG-63 on glutamine oxidation. Treatment of the osteosarcoma cell lines with cisplatin resulted in additive inhibitory effects in MG-63 cells depleted of glutamine whereas it antagonized under selective withdrawal of glucose in 3AB-OS cells thereby manifesting a paradoxical pro-survival, cell-cycle arrest in S phase and antioxidant outcome. All together the results of this study highlight that the efficacy of specific metabolite starvation combined with chemotherapeutic drugs depends on the cancer compartment and suggest cautions in using it as a generalizable curative strategy.


Sign in / Sign up

Export Citation Format

Share Document