quantitative structure property relationships
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 33)

H-INDEX

32
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Tobias Gensch ◽  
Gabriel dos Passos Gomes ◽  
Pascal Friederich ◽  
Ellyn Peters ◽  
Theophile Gaudin ◽  
...  

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce <i>kraken</i>, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1,558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300,000 new ligands. We demonstrate the application of <i>kraken</i> to systematically explore the property space of organophosphorus ligands and how existing datasets in catalysis can be used to accelerate ligand selection during reaction optimization.


2021 ◽  
Author(s):  
Tobias Gensch ◽  
Gabriel dos Passos Gomes ◽  
Pascal Friederich ◽  
Ellyn Peters ◽  
Theophile Gaudin ◽  
...  

The design of molecular catalysts typically involves reconciling multiple conflicting property requirements, largely relying on human intuition and local structural searches. However, the vast number of potential catalysts requires pruning of the candidate space by efficient property prediction with quantitative structure-property relationships. Data-driven workflows embedded in a library of potential catalysts can be used to build predictive models for catalyst performance and serve as a blueprint for novel catalyst designs. Herein we introduce <i>kraken</i>, a discovery platform covering monodentate organophosphorus(III) ligands providing comprehensive physicochemical descriptors based on representative conformer ensembles. Using quantum-mechanical methods, we calculated descriptors for 1,558 ligands, including commercially available examples, and trained machine learning models to predict properties of over 300,000 new ligands. We demonstrate the application of <i>kraken</i> to systematically explore the property space of organophosphorus ligands and how existing datasets in catalysis can be used to accelerate ligand selection during reaction optimization.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yi-Xia Li ◽  
Abdul Rauf ◽  
Muhammad Naeem ◽  
Muhammad Ahsan Binyamin ◽  
Adnan Aslam

Topological indices are quantitative measurements that describe a molecule’s topology and are quantified from the molecule’s graphical representation. The significance of topological indices is linked to their use in QSPR/QSAR modelling as descriptors. Mathematical associations between a particular molecular or biological activity and one or several biochemical and/or molecular structural features are QSPRs (quantitative structure-property relationships) and QSARs (quantitative structure-activity relationships). In this paper, we give explicit expressions of two recently defined novel ev-degree- and ve-degree-based topological indices of two classes of benzenoid, namely, linear hexagonal chain and hammer-like benzenoid.


2021 ◽  
Author(s):  
Yaping Wen ◽  
Bohan Yan ◽  
Theophile Gaudin ◽  
Jing Ma ◽  
Haibo Ma

<p><a></a><a>In addition to designing new donor (D) and/or acceptor (A) molecules, the optimization of</a><a></a><a> experimental fabrication conditions </a>for the organic solar cells (OSCs) is also a complex, multidimensional challenge, which hasn’t been theoretically explored. Herein, a new framework for simultaneous optimizing D/A molecule pairs and device specifications of OSCs is proposed, through a quantitative structure-property relationships (QSPR) model built by machine learning. Combining the <a></a><a>device parameters</a> with<a></a><a> structural and electronic </a>variables, the built QSPR model achieved unprecedentedly high accuracy and consistency. Additionally, a huge chemical space containing <a>1,942,785</a> D/A pairs is explored to find potential synergistic ones. Favorable expereimental parameters such as root-mean-square (<i>RMS</i>) and the D/A ratio (<i>DAratio</i>) are further screened by grid search methods. <a></a><a></a><a></a><a>Overall, this study suggests </a>the feasibility to optimize D/A molecule pairs and device specifications simultaneously by enabling better-informed and data-driven techniques and this could facilitate the acceleration of improving OSCs efficiencies.</p>


2021 ◽  
Author(s):  
Yaping Wen ◽  
Bohan Yan ◽  
Theophile Gaudin ◽  
Jing Ma ◽  
Haibo Ma

<p><a></a><a>In addition to designing new donor (D) and/or acceptor (A) molecules, the optimization of</a><a></a><a> experimental fabrication conditions </a>for the organic solar cells (OSCs) is also a complex, multidimensional challenge, which hasn’t been theoretically explored. Herein, a new framework for simultaneous optimizing D/A molecule pairs and device specifications of OSCs is proposed, through a quantitative structure-property relationships (QSPR) model built by machine learning. Combining the <a></a><a>device parameters</a> with<a></a><a> structural and electronic </a>variables, the built QSPR model achieved unprecedentedly high accuracy and consistency. Additionally, a huge chemical space containing <a>1,942,785</a> D/A pairs is explored to find potential synergistic ones. Favorable expereimental parameters such as root-mean-square (<i>RMS</i>) and the D/A ratio (<i>DAratio</i>) are further screened by grid search methods. <a></a><a></a><a></a><a>Overall, this study suggests </a>the feasibility to optimize D/A molecule pairs and device specifications simultaneously by enabling better-informed and data-driven techniques and this could facilitate the acceleration of improving OSCs efficiencies.</p>


Sign in / Sign up

Export Citation Format

Share Document