spontaneous mutant
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 23)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Kazuma Toida ◽  
Wakana Kushida ◽  
Hiroki Yamamoto ◽  
Kyoka Yamamoto ◽  
Kazuma Uesaka ◽  
...  

Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is the filamentous cyanobacterial species, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen-fixation. Although a widely used type strain (wild type) of this species has not been reported to show any motile activity, we isolated a spontaneous mutant strain which shows active motility (gliding activity) to give rise to complicated colony patters, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations on the genome in the mutant strain. We confirmed that inactivation of a candidate gene, dgc2 (LBDG_02920), in the wild type background was sufficient to give rise to motility and the morphological colony patterns. This gene encodes a protein, containing the GGDEF motif, which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the mutant strain lacking dgc2 significantly facilitated biofilm formation, suggesting a role of DGC for suppressing both gliding motility and biofilm formation. Thus, L. boryana provides an excellent genetic model to study dynamic colony pattern formation, and novel insight on a role of c-di-GMP for biofilm formation.


2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Yuu Hirose ◽  
Mitsunori Katayama

Calothrix sp. strain PCC 7716 is a filamentous cyanobacterium whose morphology is tapered, with basal-apical polarity. The apical filament shows positive phototropism toward white light or blue light. To elucidate the molecular basis of the phototropism, we determined the complete genome sequence of a spontaneous mutant of this strain that has a thin sheath and is suitable for genomic DNA extraction.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shujuan Tian ◽  
Jie Ge ◽  
Gongli Ai ◽  
Jiao Jiang ◽  
Qiyan Liu ◽  
...  

AbstractSeedlessness is a valuable agronomic trait in watermelon (Citrullus lanatus) breeding. Conventional less seed watermelons are mainly triploid, which has many disadvantages due to unbalanced genome content. Less seed watermelon can be achieved at the diploid level when certain reproductive genes are mutated or by chromosome translocation, which leads to defects during meiosis. However, the formation mechanism of diploid less seed watermelons remains largely unknown. Here, we identified a spontaneous mutant line, watermelon line “148”, which can set seeds normally when self-pollinated. A total of 148 × JM F1 hybrid plants exhibited seed number reductions to 50.3% and 47.3% of those of the two parental lines, respectively, which are considered to be less seed. Examination of pollen viability and hybridization experiments revealed that F1 hybrids produce semisterile pollen and ovules. Further cytological observations indicated that semisterility was a result of a reciprocal translocation of chromosomes, which exhibited one quadrivalent ring of four chromosomes at prometaphase I during meiosis. RT-qPCR analysis indirectly confirmed that the semisterile phenotype is caused by chromosome translocation rather than disruption of specific meiotic gene expression. F2 population genetic analysis indicated that the “148” watermelon line is a homozygous translocation and that the less seed phenotype of the F1 hybrid is prompted by one chromosome fragment translocation. The translocated fragment was further fine mapped to a 2.09 Mb region on chromosome 6 by whole-genome resequencing and genetic map cloning procedures. Our work revealed that a 2.09 Mb chromosome fragment translocation on chromosome 6, causing meiotic defects at metaphase I during meiosis, leads to diploid less seed watermelon. Our findings provide a new promising method for less seed watermelon breeding at the diploid level, as well as a fragment size reference for breeding less seed watermelon through artificially induced chromosome translocation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chizuru Sogawa-Fujiwara ◽  
Yasuhiro Fujiwara ◽  
Atsuki Hanagata ◽  
Qunhui Yang ◽  
Taiki Mihara ◽  
...  

Abstract Objective The biological importance for the signaling of C-type natriuretic peptide (CNP) and natriuretic peptide receptor B (NPR-B) has been recognized. However, the details remain unclear and are debatable. The Npr2 is a gene of NPR-B, and we previously reported a unique phenotype of a spontaneous mutant mouse lacking Npr2 (Npr2slw/slw), such as severe ileus-like disorder with bloodless blood vessels. In this study, we analyzed the bloodless mesenteric vascular morphology of Npr2slw/slw by histological observation to clarify the effects of the CNP/NPR-B signal deficiency. Results Blood vessels in the mesentery were clearly dilated in the preweaning Npr2slw/slw mice. Additionally, in the Npr2slw/slw mice, the lacteals were partially dilation or randomly direction mucosal epithelial cells in villi, and mesenteric adipocytes were undeveloped. These findings provide important information for understanding the role of CNP/NPR-B signals on intestine with mesentery.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jianbing Hu ◽  
Qiang Xu ◽  
Chenchen Liu ◽  
Binghao Liu ◽  
Chongling Deng ◽  
...  

AbstractSelf-incompatibility (SI) substantially restricts the yield and quality of citrus. Therefore, breeding and analyzing self-compatible germplasm is of great theoretical and practical significance for citrus. Here, we focus on the mechanism of a self-compatibility mutation in ‘Guiyou No. 1’ pummelo (Citrus maxima), which is a spontaneous mutant of ‘Shatian’ pummelo (Citrus maxima, self-incompatibility). The rate of fruit set and the growth of pollen tubes in the pistil confirmed that a spontaneous mutation in the pistil is responsible for the self-compatibility of ‘Guiyou No. 1’. Segregation ratios of the S genotype in F1 progeny, expression analysis, and western blotting validated that the reduced levels of S2-RNase mRNA contribute to the loss of SI in ‘Guiyou No. 1’. Furthermore, we report a phased assembly of the ‘Guiyou No. 1’ pummelo genome and obtained two complete and well-annotated S haplotypes. Coupled with an analysis of SV variations, methylation levels, and gene expression, we identified a candidate gene (CgHB40), that may influence the regulation of the S2-RNase promoter. Our data provide evidence that a mutation that affects the pistil led to the loss of SI in ‘Guiyou No. 1’ by influencing a poorly understood mechanism that affects transcriptional regulation. This work significantly advances our understanding of the genetic basis of the SI system in citrus and provides information on the regulation of S-RNase genes.


Author(s):  
Phyo Han Thwin ◽  
Mai Funabiki ◽  
Yuki Tomita ◽  
Takehiko Yamazaki ◽  
Ayumi Abe ◽  
...  

Abstract In phytopathogenic fungi, a mutation in the avirulence gene can lead to the breakdown of resistance in the host plant. The nucleotide sequences of the AVR-Pik locus in the strain Ina168 and its spontaneous mutant Ina168m95-5 of Pyricularia oryzae were determined. An AVR-Pik spontaneous deletion mechanism of Ina168m95-5, including multiple homologous recombination events involving repetitive transposable elements, is proposed.


2021 ◽  
Author(s):  
Chanika Maenchantrarath ◽  
Pradchama Khumdee ◽  
Seksun Samosornsuk ◽  
Narissara Mungkornkaew ◽  
Worada Samosornsuk

Abstract Background C. albicans is the most important yeast that caused the infection in humans; the trend of resistance to fluconazole (FLC) was also increased, while the FLC susceptibility by conventional method takes time causing the treatment failure. To investigate FLC susceptibility to C. albicans using MALDI-TOF MS and Real-time PCR for CDR1, CDR2, MDR1 and ERG11, overall, 32 C. albicans strains included 4 reference strains (3 FLC susceptible (S) and 1 FLC resistant (R), 1 spontaneous mutant strain (FLC susceptible-dose dependent, SDD) and 27 clinical strains obtained from 2 Thai University Hospitals were performed FLC susceptibility testing by Sensititre YeastOne and broth microdilution method, FLC resistant expression mechanism by Real-time PCR and the major peak determination by MALDI-TOF MS.Results The change of CDR1 and CDR2 mRNA expression were only significantly observed in SDD and R strains. Using MALDI-TOF MS, the change of mass spectral intensity at range 3376-3382 m/z (major peak) was significantly related to FLC susceptibility as SDD (decreased at 4 µg/ml and increase at 8 µg/ml), S (all increased), and R (all slightly decreased or no change) after incubation for 6 h. All 27 clinical strains showed FLC MIC susceptible (MIC range 0.25-2 µg/ml), no change in CDR1 and CDR2 expression and S major peak type. The FLC resistance C. albicans with CDR1 and CDR2 expression may possibly effect the change of mass spectral intensity at range 3376-3382 m/z. Conclusions The MALDI-TOF MS may be used to simultaneously classify and predict FLC resistant C. albicans strains associated with CDR1 and CDR2 expression. Further studies are essential to clarify the methodology and improve the reliability of this assay for routine diagnosis.


2021 ◽  
Author(s):  
Zhi-Yong Yan ◽  
Le Fang ◽  
Xiao-Jie Xu ◽  
De-Jie Cheng ◽  
Cheng-Ming Yu ◽  
...  

Potyviral Coat protein (CP) is involved in the replication and movement of potyviruses. However, little information is available on the roles of CP-coding sequence in potyviral infection. Here, we introduced synonymous substitutions to the codon c574g575c576 coding conserved residue arginine at position 192 (R192) of tobacco vein banding mosaic virus (TVBMV) CP. Substitution of the codon c574g575c576 to a574g575a576 or a574g575g576, but not c574g575a576, c574g575t576, or c574g575g576, reduced the replication, cell-to-cell movement, and accumulation of TVBMV in Nicotiana benthamiana plants, suggesting that c574 was critical for replication of TVBMV. Nucleotides 531 to 576 of the TVBMV CP-coding sequence were predicted to form a stem-loop structure, in which four consecutive c-g base pairs (C576-G531, c532-g575, c574-g533, and C534-G573) were located at the stem. Synonymous substitutions of R178-codon c532g533c534 to A532G533A534 and A532G533G534, but not c532g533a534, c532g533t534, or c532g533g534, reduced the replication levels, cell-to-cell, and systemic movement of TVBMV, suggesting that c532 was critical for TVBMV replication. Synonymous substitutions disrupting base pairs C576-G531 and C534-G573 did not affect viral accumulation. After three serial passage inoculation, the accumulation of spontaneous mutant viruses was restored and codons A532G533A534, A532G533G534, a574g575a576, or a574g575g576 of mutants was separately changed to C532G533A534, C532G533G534, C574g575a576, or C574g575g576. Synonymous mutation of R178 and R192 also reduced viral accumulation in N. tabacum plants. Therefore, we concluded that the two consecutive c532-g575 and c574-g533 base pairs played critical roles in TVBMV replication via maintaining the stability of stem-loop structure formed by nucleotides 531 to 576 of CP-coding sequence.


Author(s):  
Marc Permanyer ◽  
Berislav Bošnjak ◽  
Silke Glage ◽  
Michaela Friedrichsen ◽  
Stefan Floess ◽  
...  

AbstractSignaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Sign in / Sign up

Export Citation Format

Share Document