photon flux
Recently Published Documents


TOTAL DOCUMENTS

1707
(FIVE YEARS 415)

H-INDEX

60
(FIVE YEARS 9)

Author(s):  
Lorenzo Casimiro ◽  
Leonardo Andreoni ◽  
Jessica Groppi ◽  
Alberto Credi ◽  
Rémi Métivier ◽  
...  

AbstractChemical actinometers are a useful tool in photochemistry, which allows to measure the photon flux of a light source to carry out quantitative analysis on photoreactions. The most commonly employed actinometers so far show minor drawbacks, such as difficult data treatment, parasite reactions, low stability or impossible reset. We propose herewith the use of 4,4′-dimethylazobenzene as a chemical actinometer. This compound undergoes a clean and efficient E/Z isomerization, approaching total conversion upon irradiation at 365 nm. Thanks to its properties, it can be used to determine the photon flux in the UV–visible region, with simple experimental methods and data treatment, and with the possibility to be reused after photochemical or thermal reset. Graphical abstract


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Sergey Danilin ◽  
João Barbosa ◽  
Michael Farage ◽  
Zimo Zhao ◽  
Xiaobang Shang ◽  
...  

AbstractElectromagnetic filtering is essential for the coherent control, operation and readout of superconducting quantum circuits at milliKelvin temperatures. The suppression of spurious modes around transition frequencies of a few GHz is well understood and mainly achieved by on-chip and package considerations. Noise photons of higher frequencies – beyond the pair-breaking energies – cause decoherence and require spectral engineering before reaching the packaged quantum chip. The external wires that pass into the refrigerator and go down to the quantum circuit provide a direct path for these photons. This article contains quantitative analysis and experimental data for the noise photon flux through coaxial, filtered wiring. The attenuation of the coaxial cable at room temperature and the noise photon flux estimates for typical wiring configurations are provided. Compact cryogenic microwave low-pass filters with CR-110 and Esorb-230 absorptive dielectric fillings are presented along with experimental data at room and cryogenic temperatures up to 70 GHz. Filter cut-off frequencies between 1 to 10 GHz are set by the filter length, and the roll-off is material dependent. The relative dielectric permittivity and magnetic permeability for the Esorb-230 material in the pair-breaking frequency range of 75 to 110 GHz are measured, and the filter properties in this frequency range are calculated. The estimated dramatic suppression of the noise photon flux due to the filter proves its usefulness for experiments with superconducting quantum systems.


2022 ◽  
Vol 14 (2) ◽  
pp. 316
Author(s):  
Changhyeon Kim ◽  
Marc W. van Iersel

Fast growth and rapid turnover is an important crop trait in controlled environment agriculture (CEA) due to its high cost. An ideal screening approach for fast-growing cultivars should detect desirable phenotypes non-invasively at an early growth stage, based on morphological and/or physiological traits. Hence, we established a rapid screening protocol based on a simple chlorophyll fluorescence imaging (CFI) technique to quantify the projected canopy size (PCS) of plants, combined with electron transport rate (ETR) measurements using a chlorophyll fluorometer. Eleven lettuce cultivars (Lactuca sativa), selected based on morphological differences, were grown in a greenhouse and imaged twice a week. Shoot dry weight (DW) of green cultivars at harvest 51 days after germination (DAG) was correlated with PCS at 13 DAG (R2 = 0.74), when the first true leaves had just appeared and the PCS was <8.5 cm2. However, early PCS of high anthocyanin (red) cultivars was not predictive of DW. Because light absorption by anthocyanins reduces the amount of photons available for photosynthesis, anthocyanins lower light use efficiency (LUE; DW/total incident light on canopy over the cropping cycle) and reduce growth. Additionally, the total incident light on the canopy throughout the cropping cycle explained 90% and 55% of variability in DW within green and red cultivars, respectively. Estimated leaf level ETR at a photosynthetic photon flux density (PPFD) of 200 or 1000 µmol m−2 s−1 were not correlated with DW in either green or red cultivars. In conclusion, early PCS quantification is a useful tool for the selection of fast-growing green lettuce phenotypes. However, this approach may not work in cultivars with high anthocyanin content because anthocyanins direct excitation energy away from photosynthesis and growth, weakening the correlation between incident light and growth.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Juan D. Rojas ◽  
Jordan B. Joiner ◽  
Brian Velasco ◽  
Kathlyne Jayne B. Bautista ◽  
Adam M. Aji ◽  
...  

AbstractPreclinical mouse solid tumor models are widely used to evaluate efficacy of novel cancer therapeutics. Recent reports have highlighted the need for utilizing orthotopic implantation to represent clinical disease more accurately, however the deep tissue location of these tumors makes longitudinal assessment challenging without the use of imaging techniques. The purpose of this study was to evaluate the performance of a new multi-modality high-throughput in vivo imaging system that combines bioluminescence imaging (BLI) with robotic, hands-free ultrasound (US) for evaluating orthotopic mouse models. Long utilized in cancer research as independent modalities, we hypothesized that the combination of BLI and US would offer complementary advantages of detection sensitivity and quantification accuracy, while mitigating individual technological weaknesses. Bioluminescent pancreatic tumor cells were injected into the pancreas tail of C57BL/6 mice and imaged weekly with the combination system and magnetic resonance imaging (MRI) to serve as a gold standard. BLI photon flux was quantified to assess tumor activity and distribution, and US and MRI datasets were manually segmented for gross tumor volume. Robotic US and MRI demonstrated a strong agreement (R2 = 0.94) for tumor volume measurement. BLI showed a weak overall agreement with MRI (R2 = 0.21), however, it offered the greatest sensitivity to detecting the presence of tumors. We conclude that combining BLI with robotic US offers an efficient screening tool for orthotopic tumor models.


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Hiroko Yamaura ◽  
Shinichi Furuyama ◽  
Nobuo Takano ◽  
Yuka Nakano ◽  
Keiichi Kanno ◽  
...  

Tomatoes require higher irradiance, although the incidence of physiological disorders in fruit increases at high temperatures. Near-infrared (800–2500 nm) (NIR) reflective materials are effective tools to suppress rising air temperatures in greenhouses. We examined the physiological and morphological changes in tomato growth and fruit quality when grown in a high tunnel covered with NIR reflective film (NR) and in another covered with polyolefin film (PO; control). There was no relationship between the fruit cracking rate and mean daytime temperature under NR. The fruit temperature at the same truss was lower and the increase in air temperature was slow under NR. Fruit dry matter (DM) content under NR was also significantly decreased. These findings suggest that the reduction in fruit cracking under NR results from a decrease in fruit DM content as a consequence of lower fruit temperature and a decrease in total DM (TDM). Total fruit yield did not differ, whereas TDM was significantly decreased under NR. This was considered to result from a lower transmitted photosynthetic photon flux density (400–700 nm) (PPFD) and LAI, and lower photosynthetic capacity in single leaves because of a decrease in both total nitrogen and chlorophyll content. We conclude that NR film reduces fruit cracking in exchange for a slight reduction in TDM.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


MAUSAM ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 303-306
Author(s):  
Y. R. KENJLE ◽  
M. C. VARSHNEYA ◽  
T. R. U. NAIDU

ABSTRACT. The diurnal variation of rate of photosynthesis (l') with photosynthetic photon flux density (PPFD) model of light response curves and the relationship between PPFD and P were studied for two postmonsoon (rabi) sorghum genotypes, viz.. M35- I and RSV-9R under field conditions at Pune. The half maximal values. i.e., PPFD level at which P=Pmax/2 obtained were 1251 and 937 umolm-2s-1 for M35-l and RSV.9R respectively. The potential rates of photosynthesis were 65,79 and 64.52  umolm-2S-1 whereas the observed maximum rates of photosynthesis were lower. 40.93 and 46.66 umolm-2s-1 in M35-1 and RSV-9R Respectively, due to effect of air temperatures under the field conditions, n1e maximum rate of photosynthesis determined from the model decreased with delay in the sowing of the crop. Correlation coefficients between PPFD and rate of photosynthesis were 0,794 and 0,708 for M35-1 and RSV-9R respectively. The PPFD received and rate of photosynthesis decreased significantly with delay in sorghum sowing.    


2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Fucheng Yu ◽  
Feixiang Wang ◽  
Ke Li ◽  
Guohao Du ◽  
Biao Deng ◽  
...  

Rodents are used extensively as animal models for the preclinical investigation of microvascular-related diseases. However, motion artifacts in currently available imaging methods preclude real-time observation of microvessels in vivo. In this paper, a pixel temporal averaging (PTA) method that enables real-time imaging of microvessels in the mouse brain in vivo is described. Experiments using live mice demonstrated that PTA efficiently eliminated motion artifacts and random noise, resulting in significant improvements in contrast-to-noise ratio. The time needed for image reconstruction using PTA with a normal computer was 250 ms, highlighting the capability of the PTA method for real-time angiography. In addition, experiments with less than one-quarter of photon flux in conventional angiography verified that motion artifacts and random noise were suppressed and microvessels were successfully identified using PTA, whereas conventional temporal subtraction and averaging methods were ineffective. Experiments performed with an X-ray tube verified that the PTA method could also be successfully applied to microvessel imaging of the mouse brain using a laboratory X-ray source. In conclusion, the proposed PTA method may facilitate the real-time investigation of cerebral microvascular-related diseases using small animal models.


Sign in / Sign up

Export Citation Format

Share Document