soil reclamation
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 85)

H-INDEX

22
(FIVE YEARS 3)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. Hussain ◽  
I. Liaqat ◽  
S. M. Bukhari ◽  
F. S. Khan ◽  
R. Adalat ◽  
...  

Abstract To investigate the role of cow dung in soil reclamation and bio assimilation along with bio accumulation of heavy metals in earthworm (P. posthuma) (N=900) earthworms were used and treatment groups of CD-soil mixture of different proportion of cow dung were designed. Nonlethal doses of lead acetate and cadmium chloride were added in treatment groups. Mature P. posthuma were released in each experimental pot maintaining the favorable conditions. The pH, carbon, nitrogen, phosphorus, exchangeable cations, and heavy metal level of each mixture was evaluated. The results indicated that bio-assimilation of Pb and Cd by P. posthuma were significantly (P ˂ 0.01) higher in different soil-CD treatments compared to control. Highest bio-assimilation of both metals was observed in T1 of both groups (Pb = 563.8 mg/kg and Cd = 42.95 mg/kg). The contents of both metals were significantly (P ˂ 0.05) lowered in casting. The nutrient concentration in the final castings of all soil-CD treatments were also equally transformed from less or insoluble to more soluble and available for plants, except for carbon level which increased with CD proportion. It is concluded that cow dung as organic matter has a positive effect on soil reclamation and bio-assimilation of metals by P. posthuma.


2022 ◽  
Vol 51 (4) ◽  
pp. 805-818
Author(s):  
Lyudmila Asyakina ◽  
Lyubov Dyshlyuk ◽  
Alexander Prosekov

Introduction. Anthropogenic activities cause large-scale environmental problems. The growing volumes of toxic emissions contribute to soil, water, and air pollution, thus posing a serious threat to all living systems and the global ecosystem. New reclamation methods are a relevant research topic as they help to restore and preserve ecosystems. Study objects and methods. The research covered sixteen years of scientific publications from PubMed of the National Center for Biotechnology Information (USA), Elsevier (Scopus, ScienceDirect), Web of Science, and the national electronic library service eLibrary.ru. Results and discussion. The authors reviewed various scientific publications to define the main technogenic objects that have a toxic effect on biota. Soil is more vulnerable to destructive effects, and mining wastes are responsible for the largest share of technogenically disturbed objects. Pollutants include many compounds, such as heavy metals, hydrocarbons, sulfur compounds, acids, etc. Reclamation technologies reduce the man-induced impact on the environment, e.g. pollutants can be completely or partially destroyed, processed into non-toxic products, completely removed, stabilized into less toxic forms, etc. This review provides information on the main methods of reclamation of disturbed soils and substantiates the prospect of developing integrated reclamation technologies. Conclusion. The present review featured the main pollutants of anthropogenic origin and the traditional soil reclamation methods. The most prospective new technologies of soil reclamation appeared to be a combination of such biological methods as phytoremediation, bioaugmentation, and biostimulation.


Author(s):  
Yuting Li ◽  
Wenxiang Zhou ◽  
Ming Jing ◽  
Shufei Wang ◽  
Yuhan Huang ◽  
...  

Soil construction and revegetation are essential for ecological restoration in mining areas. The influence of vegetation on the horizontal and vertical distribution patterns of soil properties should be fully understood. However, most studies on reconstructed soils in mining areas only concentrate on the surface soil, without exploring the vertical variations in soil properties. Overall, this study aims to explore the potential mechanisms by which surface vegetation exerts some influence on the spatial distribution of soil physicochemical properties, and to provide some insight into revegetation and soil reclamation in mining areas. Descriptive statistics and one-way analysis of variance (one-way ANOVA) were employed to evaluate the differences in the soil physicochemical properties in horizontal and vertical directions under different land-use types in the south dump of Antaibao opencast mine in Pingshuo, Shanxi Province, China. The main results of this study are as follows: (1) In the horizontal direction, except for the strong variation (variation coefficient ≥ 100%) in soil organic matter (SOM) content at some depths, the degree of variation in other soil physicochemical properties at various depths was moderate or weak (variation coefficient < 100%). The soil physicochemical properties gradually remained constant after years of reclamation. In the vertical direction, the soil bulk density (SBD), soil porosity, SOM content, soil C/N ratio, soil total nitrogen (STN) content, soil available phosphorus (SAP) content, and soil available potassium (SAK) content showed significant variations (p < 0.05) between soil depths. In contrast, no significant difference was found for other physicochemical properties. (2) The SBD, STN, SAK, soil porosity, and soil clay content were significantly different (p < 0.05) under different vegetation cover types, but the influence of vegetation on other soil physicochemical properties seemed to be limited. The results reveal that trees have a stronger ability to reduce soil grain sizes and enhance SAP contents than shrubs or herbs; however, the beneficial effects of herbs on the physicochemical properties of shallow soil are more obvious than those of trees and shrubs. (3) This study indicates that more shrubs and trees should be planted in the areas with low vegetation coverage, and more measures should be taken to improve soil physicochemical properties in order to prevent the occurrence of large-scale degradation. The reconstruction of soil structure should be preferentially considered in the process of soil reconstruction and revegetation in areas under similar conditions. Herbs should first be planted in the early reclamation stage. At the same time, shrubs or trees can be adopted in the middle and late stages of vegetation reconstruction in order to achieve comprehensive revegetation.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Crina Calenciuc ◽  
Antía Fdez-Sanromán ◽  
Gabriela Lama ◽  
Sivasankar Annamalai ◽  
Angeles Sanromán ◽  
...  

Soil pollution has become a substantial environmental problem which is amplified by overpopulation in different regions. In this review, the state of the art regarding the use of Advanced Oxidation Processes (AOPs) for soil remediation is presented. This review aims to provide an outline of recent technologies developed for the decontamination of polluted soils by using AOPs. Depending on the decontamination process, these techniques have been presented in three categories: the Fenton process, sulfate radicals process, and coupled processes. The review presents the achievements of, and includes some reflections on, the status of these emerging technologies, the mechanisms, and influential factors. At the present, more investigation and development actions are still desirable to bring them to real full-scale implementation.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 144
Author(s):  
Evgeny Lodygin ◽  
Evgeny Abakumov

Agricultural soil use does not only affect the amount of soil organic matter, but also the molecular composition of humic (HAs) and fulvic acids (FAs). Changed hydrothermal conditions and composition of the incoming plant residues are reflected in the rate of humification and its products. The objective of this study was to compare the molecular composition of HAs and FAs isolated from Eutric Albic Stagnic Histic Retisol (Loamic), two Eutric Albic Retisols (Loamic)—mature and arable. Plots of mature Retisols are located at a middle taiga (Komi Republic, Russia) in a bilberry-green-moss birch-spruce forest. The plot of Retisols arable is located in the fields of the Syktyvkar state farm, which is 3.3 km northeast of mature Retisol plots. The development period is about 40 years, it is sowed with a pea-oat mixture. The results obtained indicate that soil reclamation essentially increases the proportion of aromatic components and decreases the content of carboxyl and ester groups in the humic substance (HS) structure. An increased extent of hydromorphism of Retisols leads to the enrichment of HS with aliphatic fragments.


2021 ◽  
Vol 930 (1) ◽  
pp. 012011
Author(s):  
A Setiawan ◽  
B S Wignyosukarto ◽  
A P Rahardjo ◽  
Yakubson

Abstract The reclamation process of acid sulphate soil of the Belanti II tidal irrigation scheme remains unfinished. During ebb tide, the upstream acidic drainage water retains and settles in the irrigation canals. During high tide, the acidic water flows back into some parts of the agricultural land and reduces rice productivity. The measured pH is about 2.5 ~ 3.5 and the measured electric conductivity is about 0,25 ~ 0,35 mS/cm. Sedimentation in the middle to the end of the primary, secondary, and collector canals and tidal pond at the upstream end of the primary canal, preventing the leaching process of sulfuric acid soil. Primary canal normalization as an alternative solution to increase the capability of acidity leaching is proposed. Leaching the acidic soil of Belanti II irrigated area of 3.976 ha requires 500 m3/ha/day of freshwater, equivalent to 1.998.000 m3/day. The one-dimensional HEC RAS mathematical model is used to evaluate the hydraulics performance to support the leaching process. The hydraulic analysis was carried out using two tidal cycles on the existing channel and the normalized channel. Channel normalization has succeeded in reducing the water supply deficit to support the leaching process from 39% to 9%.


2021 ◽  
Vol 931 (1) ◽  
pp. 012015
Author(s):  
P Zhang ◽  
V V Matichenkov ◽  
E A Bocharnikova ◽  
S M Sevostianov

Abstract Numerous investigations demonstrate that active forms of silicon (Si) enhance the plant tolerance against abiotic stresses by several mechanisms, including increasing the antioxidant activities and minimizing oxidative damage. Soil contamination with oil and oil products relates to abiotic stress that detrimentally affects soil microbial population and plant growth. Considering the crucial role of microorganisms and plants in bioremediation of oil-polluted areas, Si substances can be beneficial to acceleration of soil reclamation. In greenhouse experiment, wheat was grown in Grey Forest Soil contaminated with used motor oil. The effect of fumed silica and monosilicic acid on soil enzymatic activity and plant growth was studied. Both Si substances provided increasing the plant biomass and the activities of catalase and dehydrogenase. As regards the plant growth, the effect of Si was more pronounced in polluted soil, while the enzyme activity was higher affected in unpolluted soil. The activities of catalase and dehydrogenase were closely correlated to the water-soluble Si in soil (R=0.91-0.92). Silicon substances with high content of, plant-and microorganism-available Si might be promising for involvement in bioremediation technology for oil-contaminated soil.


Author(s):  
Li Li ◽  
Tingliang Li ◽  
Huisheng Meng ◽  
Yinghe Xie ◽  
Jie Zhang ◽  
...  

The restoration of soil fertility and microbial communities is the key to the soil reclamation and ecological reconstruction in coal mine subsidence areas. However, the response of soil bacterial communities to reclamation is still not well understood. Here, we studied the bacterial communities in fertilizer-reclaimed soil (CK, without fertilizer; CF, chemical fertilizer; M, manure) in the Lu’an reclamation mining region and compared them with those in adjacent subsidence soil (SU) and farmland soil (FA). We found that the compositions of dominant phyla in the reclaimed soil differed greatly from those in the subsidence soil and farmland soil (p < 0.05). The related sequences of Acidobacteria, Chloroflexi, and Nitrospirae were mainly from the subsided soil, whereas those of Alphaproteobacteria, Planctomycetes, and Deltaproteobacteria were mainly derived from the farmland soil. Fertilization affected the bacterial community composition in the reclaimed soil, and bacteria richness and diversity increased significantly with the accumulation of soil nutrients after 7 years of reclamation (p < 0.05). Moreover, soil properties, especially SOM and pH, were found to play a key role in the restoration of the bacterial community in the reclaimed soil. The results are helpful to the study of soil fertility improvement and ecological restoration in mining areas.


2021 ◽  
Vol 845 (1) ◽  
pp. 012056
Author(s):  
E A Gribut ◽  
M A Kulikova ◽  
T A Kolesnikova ◽  
O A Surzhko ◽  
G E Merzlaya

Abstract The most effective doses of the modified organic-mineral fertilizer (MOF), produced from non-contact pig manure in the conditions of the Rostov region for the purpose of soil reclamation, were determined. Experimental studies were carried out to determine the most effective dose of MOF based on non-contact pig manure. The dependence of the spring wheat yield on the use of a modified organic-mineral fertilizer based on liquid waste from pig farms fermented bird droppings and mineral fertilizers is determined. The equivalence of the effect of a modified organic-mineral fertilizer based on liquid waste from pig farms and fermented bird droppings, introduced in an equivalent dose, on plant biomass was established. When comparing the effects of different types of fertilizers, their toxicity was not established. The introduction of a modified organic-mineral fertilizer based on liquid waste from pig farms at a dose of 2 t / ha provided the highest biomass yield of 34-day-old plants of spring wheat of the “Zlata” variety, which reached 0.9 g/vessel and was 28.5% higher than the control value. A new organic mineral fertilizer with a pH of 8-10, with an organic content of up to 73% per dry weight, can be used for supporting the quality of liming and improving soil.


Sign in / Sign up

Export Citation Format

Share Document