half cycle
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 154)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bin Li ◽  
Shihao Jia

AbstractArc fault in the three-phase load circuit may cause fire, resulting in production interruption and even worse, it will cause casualties. In order to effectively detect the arc fault in the three-phase circuit, series arc fault experiments of three-phase motor load and frequency converter were carried out under different current conditions. Firstly, variational mode decomposition (VMD) was performed for each cycle of A-phase current, and then the VMD energy entropy and sample entropy were calculated. Secondly, the noise-dominated component was removed according to the permutation entropy, then the average value after first-order difference of the half-cycle reconstructed signal was obtained. An arc fault diagnosis model of extreme learning machine (ELM) optimized by sparrow search algorithm (SSA) was established. The feature vectors were divided into training group and test group to train the model and test its fault diagnosis accuracy. Compared with GA-ELM, PSO-ELM, support vector machine (SVM) and SSA-SVM, the experimental results show that the proposed method can identify the series arc fault accurately and more quickly.


Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Abstract Floating offshore wind turbines (FOWTs) are subject to undesirable platform motion and significant increase in fatigue loads compared to their onshore counterparts. We have recently proposed using the Fishing Line Artificial Muscle (FLAM) actuators to realize active mooring line force control (AMLFC) for platform stabilization and thus load reduction, which features compact design and no need for turbine redesign. However, as for the thermally activated FLAM actuators, a major control challenge lies in the asymmetric dynamics for the heating and the cooling half cycle of operation. In this paper, for a tension-leg platform (TLP) based FOWT with FLAM actuator based AMLFC, a hybrid dynamic model is obtained with platform pitch and roll degrees of freedom included. Then a hybrid model predictive control (HMPC) strategy is proposed for platform motion stabilization, with preview information on incoming wind and wave. A move blocking scheme is used to achieve reasonable computational efficiency. FAST based simulation study is performed using the NREL 5 MW wind turbine model. Under different combinations of wind speed, wave height and wind directions, simulation results show that the proposed control strategy can significantly reduce the platform roll and tower-base side-to-side bending moment, with mild level of actuator power consumption.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Aleena Swetapadma ◽  
Shobha Agarwal ◽  
Satarupa Chakrabarti ◽  
Soham Chakrabarti ◽  
Adel El-Shahat ◽  
...  

Most of the fault location methods in high voltage direct current (HVDC) transmission lines usemethods which require signals from both ends. It will be difficult to estimate fault location if the signal recorded is not correct due to communication problems.Hence a robust method is required which can locate fault with minimum error. In this work, faults are located using boosting ensembles in HVDC transmission lines based on single terminal direct current (DC) signals. The signals are processed to obtain input features that vary with the fault distance. These input features are obtained by taking maximum of half cycle current signals after fault and minimum of half cycle voltage signals after fault from the root mean square of DC signals. The input features are input to a boosting ensemble for estimating the location of fault. Boosting ensemble method attempts to correct the errors from the previous models and find outputs by combining all models. The boosting ensemble method has been also compared with the decision tree method and thebagging-based ensemble method. Fault locations are estimated using three methods and compared to obtain an optimal method. The boosting ensemble method has better performance than all the other methods in locating the faults. It also validated varying fault resistance, smoothing reactors, boundary faults, pole to ground faults and pole to pole faults. The advantage of the method is that no communication link is needed. Another advantage is that it allowsreach setting up to 99.9% and does not exhibitthe problem of over-fitting. Another advantage is that the percentage error in locating faults is within 1% and has a low realization cost. The proposed method can be implemented in HVDC transmission lines effectively as an alternative to overcome the drawbacks of traveling wave methods.


2021 ◽  
Vol 12 (1) ◽  
pp. 5
Author(s):  
Atif Muzaffar ◽  
Muhammad Tayyab ◽  
Ahmad Abbas ◽  
Taqi Ahmad Cheema

Alternative fuels have proven to be an effective means of reducing the environmental impact of road transportation. On the other hand, the increasing use of air conditioning has declined the fuel economy of passenger vehicles. Half-cycle air conditioning systems (HCACSs) can address this concern of the declining fuel economy by using the fuel as a refrigerant. One of the candidates to be considered as refrigerants in HCACSs is liquefied petroleum gas (LPG). Under various conditions, LPG in the liquid state is injected into the evaporator of an HCACS. At the end of the evaporation process, LPG vapors can be directed for the combustion taking place in devices such as generators, automobiles, and cooking stoves. The present study investigates the performance of three in-housed manufactured evaporators having staggered and/or aligned tube arrangements with variable tube sizes, numbers of fins, fin spacings, and fin materials. As a refrigerant, LPG, having 65% propane and 35% butane, was passed through three evaporators. The energy efficiency ratios (EERs) were indirectly measured for evaporative pressures of 132, 168, and 201 kPa, with mass flow rates of 0.6, 0.75, and 0.9 g/s, respectively, when the fan speed interacting with the evaporators was varied. The results revealed that the aligned configuration with the same tube and fin material performed better even at low fan speeds.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4387
Author(s):  
Zhaoliang Xing ◽  
Wenhan Chen ◽  
Zhihui Li ◽  
Naifan Xue ◽  
Fei Li ◽  
...  

Polyimide (PI) can be used as a cladding insulation for high frequency power transformers, and along-side discharge can lead to insulation failure, so material modification techniques are used. In this paper, different doped nano-SiO2 are introduced into polyimide for nanocomposite modification. The results of testing the life time of high-frequency electrical stress along-side discharge show that the 10% SiO2 doping has the longest life time. The results show that: for composites prone to corona, their flashover causes more damage, and both positive half-cycle and polarity reversal discharges are more violent; compared to pure PI, the positive half-cycle and overall discharge amplitude and number of modified films are smaller, but the negative half-cycle is larger; at creeping development stages, the number of discharges is smaller, and the discharge amplitude of both films fluctuates in the mid-term, with the modified films having fewer discharges and the PI films discharging more violently in the later stages. The increase in the intensity of the discharge was greater in the later stages, and the amplitude and number of discharges were much higher than those of the modified film, which led to a rapid breakdown of the pure polyimide film. Further research found that resistivity plays an important role in the structural properties of the material in the middle and late stages, light energy absorption in the modified film plays an important role, the distribution of traps also affects the discharge process, and in the late stages of the discharge, the heating of the material itself has a greater impact on the breakdown, so the pure polyimide film as a whole discharges more severely and has the shortest life.


Author(s):  
Jigneshkumar Pramodbhai Desai ◽  
Vijay Hiralal Makwana

AbstractOut-of-step protection of one or a group of synchronous generators is unreliable in a power system which has significant renewable power penetration. In this work, an innovative out-of-step protection algorithm using wavelet transform and deep learning is presented to protect synchronous generators and transmission lines. The specific patterns are generated from both stable and unstable power swing, and three-phase fault using the wavelet transform technique. Data containing 27,008 continuous samples of 48 different features is used to train a two-layer feed-forward network. The proposed algorithm gives an automatic, setting free and highly accurate classification for the three-phase fault, stable power swing, and unstable power swing through pattern recognition within a half cycle. The proposed algorithm uses the Kundur 2-area system and a 29-bus electric network for testing under different swing center locations and levels of renewable power penetration. Hardware-in-the-loop (HIL) tests show the hardware compatibility of the developed out-of-step algorithm. The proposed algorithm is also compared with recently reported algorithms. The comparison and test results on different large-scale systems show that the proposed algorithm is simple, fast, accurate, and HIL tested, and not affected by changes in power system parameters.


2021 ◽  
Author(s):  
Saleh Abdel-Hafeez ◽  
Sanabel Otoom ◽  
Muhannad Quwaider

Memory Alias Table exploits a major role in Register Renaming Unit (RRU) for maintaining the translation between logical registers to physical registers for the given instruction(s). This work presents the design of the memory Alias Table based on the 8TCell with multiport write, read, and content-addressable operation for 2-WAY three operands machine cycle. Results show that four read ports operate simultaneously within a half-cycle, while two-write ports operate simultaneously within the other half-cycle. The operation of content-addressable with two parallel ports is managed during the half-cycle of the read phase; thus, the three operations occur within a single cycle without latency. HSPICE simulations conduct 32-rows x 6-bit with 21T-Cell memory Alias Table that has 4- read ports, 2-write ports, and 2-content-addressable ports using a standard 65 nm/1V CMOS process. Simulations reveal that the proposed design operates within a one-cycle of 1 GHz consuming an average power of 0.87 mW


Author(s):  
Muji Setiyo ◽  
Bagiyo Condro Purnomo ◽  
Budi Waluyo ◽  
Suroto Munahar ◽  
Muhammad Latifur Rochman ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 9829
Author(s):  
Kenji Fujii ◽  
Takumi Masuda

In this article, the applicability of mode-adaptive bidirectional pushover analysis (MABPA) to base-isolated irregular buildings was evaluated. The point of the updated MABPA is that the peaks of the first and second modal responses are predicted considering the energy balance during a half cycle of the structural response. In the numerical examples, the main building of the former Uto City Hall, which was severely damaged in the 2016 Kumamoto earthquake, was investigated as a case study for the retrofitting of an irregular reinforced concrete building using the base-isolation technique. The comparisons between the predicted peak response by MABPA and nonlinear time-history analysis results showed that the peak relative displacement can be properly predicted by MABPA. The results also showed that the performance of the retrofitted building models was satisfactory for the ground motion considered in this study, including the recorded motions in the 2016 Kumamoto earthquake.


Sign in / Sign up

Export Citation Format

Share Document