uniform field
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 80)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Yang Li ◽  
Hua Pang

Abstract The understanding of the creation and annihilation dynamics of a magnetic skyrmion is significant due to its potential applications in information storage and spintronics. Although there have been extensive investigations on the annihilation of isolated skyrmion, topological annihilation in periodic skyrmion lattice is a more complex process. We report a micromagnetic simulation study about the annihilation process of a two-dimensional skyrmion triangular lattice triggered by a uniform field HREV of comparable size to the skyrmion, which is opposite to the direction of the background field, revealing two annihilation modes. When the HREV center is within the range of a skyrmion, the neighboring skyrmions annihilate in situ, while the center is between adjacent skyrmions, anti-skyrmion is induced in the interstitial region. Both mechanisms tend to experience the intermediate topological vortex or antivortex structure, and the spin system undergoes a long period of relaxation to reach a stable state after the topological charge is stabilized. Our results present a local annihilation scheme that is easy to achieve in a 2D skyrmion lattice and highlight the role of interaction between skyrmions in the transformation between different kinds of topological defects.


2021 ◽  
Author(s):  
Xuehao Ding ◽  
Dongsoo Lee ◽  
Satchel Grant ◽  
Heike Stein ◽  
Lane McIntosh ◽  
...  

The visual system processes stimuli over a wide range of spatiotemporal scales, with individual neurons receiving input from tens of thousands of neurons whose dynamics range from milliseconds to tens of seconds. This poses a challenge to create models that both accurately capture visual computations and are mechanistically interpretable. Here we present a model of salamander retinal ganglion cell spiking responses recorded with a multielectrode array that captures natural scene responses and slow adaptive dynamics. The model consists of a three-layer convolutional neural network (CNN) modified to include local recurrent synaptic dynamics taken from a linear-nonlinear-kinetic (LNK) model \cite{ozuysal2012linking}. We presented alternating natural scenes and uniform field white noise stimuli designed to engage slow contrast adaptation. To overcome difficulties fitting slow and fast dynamics together, we first optimized all fast spatiotemporal parameters, then separately optimized recurrent slow synaptic parameters. The resulting full model reproduces a wide range of retinal computations and is mechanistically interpretable, having internal units that correspond to retinal interneurons with biophysically modeled synapses. This model allows us to study the contribution of model units to any retinal computation, and examine how long-term adaptation changes the retinal neural code for natural scenes through selective adaptation of retinal pathways.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8299
Author(s):  
Binhai Fan ◽  
Yong Qian ◽  
Yiming Zang ◽  
Ze Li ◽  
Xiaoli Zhou

As an environmentally friendly gas with good insulation and stable chemical properties, CF3I gas mixture is considered as a potential alternative to SF6 gas to compensate for the shortcomings of SF6 gas as a greenhouse gas. This article attempts to study the CF3I ternary gas mixtures with c-C4F8 and N2 by considering the process of streamer development in surface discharge. The model of surface discharge in CF3I gas mixture under DC voltage was established by COMSOL, and the drift-diffusion equations of particles was solved to show the discharge process, and the changes of electric field and particle concentration, etc. during the development of streamer were obtained, which provides the theoretical basis for the reliable diagnosis of partial discharge. On this basis, the model is compared with models for two other different gases (SF6/N2, artificial air) in terms of particle characteristics, streamer characteristics and streamer branches characteristics. Finally, it is concluded that under this model, although the insulation characteristics in CF3I gas mixture are weaker than those in SF6, the difference is not large and both are much better than those in artificial air, so c-C4F8/CF3I can be considered as a potential substitute for SF6.


2021 ◽  
Vol 257 (2) ◽  
pp. 44
Author(s):  
J. F. Wang ◽  
G. Qin

Abstract The momentum diffusion of charged energetic particles is an important mechanism of the transport process in astrophysics, the physics of fusion devices, and laboratory plasmas. In addition to the momentum diffusion term for a uniform field, we obtain an additional momentum diffusion term due to the focusing effect of the large-scale magnetic field. After evaluating the coefficient of the additional momentum diffusion term, we find that it is determined by the sign of the focusing characteristic length and the cross helicity of the turbulent magnetic field. Furthermore, by deriving the mean momentum change rate contributed from the additional momentum diffusion term, we identify that the focused field provides an additional momentum loss or gain process.


Author(s):  
Georgios Kourkafas ◽  
Juergen Bundesmann ◽  
Andrea Denker ◽  
Timo Fanselow ◽  
Jörg Röhrich ◽  
...  

Background and aims In the pursuit of optimal parameters for FLASH irradiation, all components involved in the beam delivery should be compatible with requirements spread in an extreme and wide unexplored regime. Aiming for minimal total irradiation times with modulated proton beams, which deliver a flat depth-dose distribution along tumors, a static range modulator has been developed to accommodate ultra-short beam durations regardless of their time structure. The design goals were set to match the functionality of the rotating wheel used for in-vivo and in-vitro FLASH investigations at HZB. Methods Having the form of a ridge filter extended to an additional dimension, a hexagonal-pyramid pattern was configured to an incoming beam of 23 MeV energy with > 1 mm radius, in order to create a 6 mm uniform field with a flat dose range of 5 mm at the target. The manufacturing was done with a 3D printer using VeroWhite, a material similar to PMMA. The lateral and distal dose distribution of both modulators were measured using a Markus Chamber (PTW-Freiburg, Germany) in a water phantom and a radioluminescent screen mounted in front of CCD camera, respectively. Results The developed modulator created very flat dose distributions as designed, with negligible differences to the reference rotating wheel. The positioning tolerances were evaluated as relatively relaxed, with offsets of 2 cm and an angle of 5 degrees not compromising the desired performance. Conclusions The developed static modulator allows systematic proton FLASH studies on small organs using a broad range of timing schemes, disentangled from temporal and spatial incoherencies.


2021 ◽  
Author(s):  
◽  
Peter B Johnson

<p>The associated particle technique is applied to the D(d.n) He3 reaction, in order to produce a tagged neutron beam of accurately known energy, flux, and direction. The incident deuteron beam is obtained from a 400 Kv positive ion Van de Graaff accelerator. A description is given of the design of a uniform field sector magnet and other equipment associated with the stabilization and calibration of the energy of the incident deuteron beam. A versatile n-He3 coincidence system is described. The use of a silicon surface barrier detector with a thin nickel foil window enables complete resolution of the He3 peak with consequent improved neutron flux determination. The tagged neutron beam is used to measure the absolute neutron cross sections of the K39 (n,p) A39 and K39 (n, alpha) Cl36 reactions at a neutron energy of 2.46 Mev. The results obtained, (95 plus-minus 4) mb and (6.2 plus-minus 1) mb respectively, are compared with values obtained by other workers, and with theoretical predictions.</p>


2021 ◽  
Author(s):  
◽  
Peter B Johnson

<p>The associated particle technique is applied to the D(d.n) He3 reaction, in order to produce a tagged neutron beam of accurately known energy, flux, and direction. The incident deuteron beam is obtained from a 400 Kv positive ion Van de Graaff accelerator. A description is given of the design of a uniform field sector magnet and other equipment associated with the stabilization and calibration of the energy of the incident deuteron beam. A versatile n-He3 coincidence system is described. The use of a silicon surface barrier detector with a thin nickel foil window enables complete resolution of the He3 peak with consequent improved neutron flux determination. The tagged neutron beam is used to measure the absolute neutron cross sections of the K39 (n,p) A39 and K39 (n, alpha) Cl36 reactions at a neutron energy of 2.46 Mev. The results obtained, (95 plus-minus 4) mb and (6.2 plus-minus 1) mb respectively, are compared with values obtained by other workers, and with theoretical predictions.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 966
Author(s):  
Indika Weerasekara ◽  
Uma Rani Sinniah ◽  
Parameswari Namasivayam ◽  
Muhamad Hazim Nazli ◽  
Sharif Azmi Abdurahman ◽  
...  

Soybean seed vigour declines with increase in storage duration, due to ageing, which can be alleviated through seed priming. The objective of this study was to investigate the effects of Humic acid (HA) priming on germination, vigour and seedling performance under laboratory and greenhouse conditions with two soil moisture level [50% and 80% field capacity (FC)]. Seeds stored for 12 months having 60% germination were primed either with 0.2 g/L HA solution or distilled water (hydro-primed) at 25 °C for 1, 3, 5 and 7 h. Non-primed dry seeds were used as control, giving nine treatment combinations. Various germination traits [mean germination time (MGT), final germination percentage (FG%), germination rate index (GRI), seedling emergence percentage (SEP)], mean emergence time (MET), seedling quality traits [seedling vigor index (SVI), shoot length, root length, root volume], antioxidant enzyme activities [catalase (CAT), peroxidase (POD)], lipid peroxidation [malondialdehyde (MDA)] and electrical conductivity (EC) were determined. A germination test in the laboratory was conducted as single factor (nine priming treatments), while the greenhouse experiment was conducted as two factors [2 soil moisture level (50 and 80% FC) and 9 priming treatments]. The results indicated that seeds primed with HA for 5 h was able to reinstate the CAT activities (25%), POD activities (50%) and reduced EC (51%) and MDA content (40%) compared with non-primed seeds, reduced the MET (from 4.3 to 3.5 days), increased FG% (from 62 to 71%), GRI (15.6–21.1) and SEP (from 35 to 54%) and (from 60 to 72%) at 50% FC level and 80% FC level, respectively. A strong negative correlation (r = −0.80 **) was found between MDA content and GRI, while CAT and POD activities had positive correlation with GRI r= 0.67 ** and r = 0.56 **, respectively. Thus, priming with 0.2 g/L HA for 5 h improved the vigour of minimally deteriorated soybean seeds resulting in increased emergence with more uniform field establishment.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6590
Author(s):  
Javier Benavides-Vazquez ◽  
Jose-Luis Vazquez-Roy ◽  
Eva Rajo-Iglesias

This paper presents some considerations on the design of a novel antenna consisting of the combination of a transverse stubs (TS) array excited by Ridge Gap Waveguides (RGWs), as well as a discussion of the experimental results obtained from a prototype that was manufactured and measured. A combination of Continuous Transverse Stubs (CTSs) is used as the starting point. Subsequently, the CTSs are modified to include some metallic blockers that split each CTS into a combination (array) of shorter TSs. This is performed in order to excite each individual TS column using a different RGW; thus, ensuring a close to uniform field distribution in the transverse plane of the TS arrays. Hence, the directivity of the antenna is increased. As a series-feed configuration is considered, the antenna keeps a resonant behaviour, having a narrow-band response. A Corporate Feeding Network (CFN) using the aforementioned RGW technology placed in the same layer as the rest of the antenna is included in the design. The radiating area of the antenna is, finally, 5.88λ0×7.12λ0 with a simulated peak gain of 26.2 dBi and a Side Lobe Level (SLL) below −13 dB. A prototype is manufactured and tested. The simulated and measured radiation patterns maintain similar shapes to those of the simulations, with very similar angular widths in both main planes, although the frequency corresponding to the highest directivity changes to 31.8 GHz. A matching bandwidth of 517 MHz and a gain of 24.5 is, finally, achieved at that frequency.


2021 ◽  
Vol 11 (19) ◽  
pp. 8886
Author(s):  
Garnet Cameron ◽  
Jonathan Cuevas ◽  
Jeffrey Pound ◽  
David Shiner

Atomic state preparation can benefit from a compact and uniform magnetic field source. Simulations and experimental measurements have been used to design, build, and test such a source and then apply it to the optical pumping of atomic helium. This source is a 9.5 mm (3/8″) OD × 6.7 mm (1/4″) ID × 9.5 mm (3/8″) long, NdFeB-N42 assembly of 1.6 mm (1/16″) thick customized annular magnets. It has octupole decay with a residual dipole far field from imperfect dipole cancelations. Fast B-field decay localizes the field, minimizing the need for shielding in applications. It has a greater than 50% clear aperture with a uniform and collimated magnetic field consistent with the prediction of several models. The device is applied to a high precision 3,4He laser spectroscopy experiment using σ+ or σ− optical pumping currently resulting in a measured 99.3% preparation efficiency and in accordance with a rate equation model.


Sign in / Sign up

Export Citation Format

Share Document