immune sensing
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 82)

H-INDEX

34
(FIVE YEARS 8)

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009992
Author(s):  
Shivohum Bahuguna ◽  
Magda Atilano ◽  
Marcus Glittenberg ◽  
Dohun Lee ◽  
Srishti Arora ◽  
...  

The gut sets the immune and metabolic parameters for the survival of commensal bacteria. We report that in Drosophila, deficiency in bacterial recognition upstream of Toll/NF-κB signalling resulted in reduced density and diversity of gut bacteria. Translational regulation factor 4E-BP, a transcriptional target of Toll/NF-κB, mediated this host-bacteriome interaction. In healthy flies, Toll activated 4E-BP, which enabled fat catabolism, which resulted in sustaining of the bacteriome. The presence of gut bacteria kept Toll signalling activity thus ensuring the feedback loop of their own preservation. When Toll activity was absent, TOR-mediated suppression of 4E-BP made fat resources inaccessible and this correlated with loss of intestinal bacterial density. This could be overcome by genetic or pharmacological inhibition of TOR, which restored bacterial density. Our results give insights into how an animal integrates immune sensing and metabolism to maintain indigenous bacteria in a healthy gut.


2021 ◽  
Author(s):  
Erin M Harberts ◽  
Daniel Grubaugh ◽  
Daniel C. Akuma ◽  
Sunny Shin ◽  
Robert K Ernst ◽  
...  

Immune sensing of the Gram-negative bacterial membrane glycolipid lipopolysaccharide (LPS) is both a critical component of host defense against Gram-negative bacterial infection, and a contributor to hyper-inflammatory response, leading to sepsis and death. Innate immune activation by LPS is due to the lipid A moiety, an acylated di-glucosamine molecule that can activate inflammatory responses via the extracellular sensor TLR4/MD2 or the cytosolic sensor caspase-11 (Casp11). The number and length of acyl chains present on bacterial lipid A structures vary across bacterial species and strains, which affects the magnitude of TLR4 and Casp11 activation. TLR4 and Casp11 are thought to respond similarly to various lipid A structures, as tetra-acylated lipid A structures do not activate either sensor, whereas hexa-acylated structures activate both sensors. However, direct analysis of extracellular and cytosolic responses to the same sources and preparations of LPS/lipid A structures have been limited, and the precise features of lipid A that determine the differential activation of each receptor remain poorly defined. To address this question, we used rationally engineered lipid A isolated from a series of bacterial acyl-transferase mutants that produce novel, structurally defined molecules. Intriguingly, we find that the location of specific secondary acyl chains on lipid A resulted in differential recognition by TLR4- or Casp11, providing new insight into the structural features of lipid A required to activate either TLR4- or Casp11. Our findings indicate that TLR4 and Casp11 sense non-overlapping areas of lipid A chemical space, thereby constraining the ability of Gram-negative pathogens to evade innate immunity.


Author(s):  
Irene Fernández-Duran ◽  
Andrea Quintanilla ◽  
Núria Tarrats ◽  
Jodie Birch ◽  
Priya Hari ◽  
...  

AbstractCytoplasmic recognition of microbial lipopolysaccharides (LPS) in human cells is elicited by the caspase-4 and caspase-5 noncanonical inflammasomes, which induce a form of inflammatory cell death termed pyroptosis. Here we show that LPS-mediated activation of caspase-4 also induces a stress response promoting cellular senescence, which is dependent on the caspase-4 substrate gasdermin-D and the tumor suppressor p53. Furthermore, we found that the caspase-4 noncanonical inflammasome is induced and assembled in response to oncogenic RAS signaling during oncogene-induced senescence (OIS). Moreover, targeting caspase-4 expression in OIS showed its critical role in the senescence-associated secretory phenotype and the cell cycle arrest induced in cellular senescence. Finally, we observed that caspase-4 induction occurs in vivo in mouse models of tumor suppression and ageing. Altogether, we are showing that cellular senescence is induced by cytoplasmic LPS recognition by the noncanonical inflammasome and that this pathway is conserved in the cellular response to oncogenic stress.


2021 ◽  
Author(s):  
Zhifeng Zeng ◽  
Yu Chen ◽  
Rafael Pinilla-Redondo ◽  
Shiraz A. Shah ◽  
Fen Zhao ◽  
...  

SummaryArgonaute (Ago) proteins are widespread nucleic acid-guided enzymes that recognize targets through complementary base pairing. While in eukaryotes Agos are involved in RNA silencing, the functions of prokaryotic Agos (pAgos) remain largely unknown. In particular, a clade of truncated and catalytically inactive pAgos (short pAgos) lacks characterization. Here, we reveal that a short pAgo protein in Sulfolobus islandicus, together with its two genetically associated proteins, Aga1 and Aga2, provide robust antiviral protection via abortive infection. Aga2 is a membrane-associated toxic effector that binds anionic phospholipids via a basic pocket, which is essential for its cell killing ability. Ago and Aga1 form a stable complex that exhibits RNA-directed nucleic acid recognition ability and directly interacts with Aga2, pointing to an immune sensing mechanism. Together, our results highlight the cooperation between pAgos and their widespread associated proteins, suggesting an uncharted diversity of pAgo-derived immune systems that await to be discovered.


2021 ◽  
Vol 73 ◽  
pp. 1-8
Author(s):  
David A Constant ◽  
Timothy J Nice ◽  
Isabella Rauch

iScience ◽  
2021 ◽  
pp. 103714
Author(s):  
Shalabh Mishra ◽  
Athira S. Raj ◽  
Akhilesh Kumar ◽  
Ashwathi Rajeevan ◽  
Puja Kumari ◽  
...  

2021 ◽  
Vol 118 (49) ◽  
pp. e2108709118
Author(s):  
Natacha S. Ogando ◽  
Priscila El Kazzi ◽  
Jessika C. Zevenhoven-Dobbe ◽  
Brenda W. Bontes ◽  
Alice Decombe ◽  
...  

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5′ exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3′-to-5′ ExoN domain and a C-terminal (N7-guanine)–methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14’s enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)–CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chonghui Xu ◽  
Jizheng Chen ◽  
Xinwen Chen

Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.


mBio ◽  
2021 ◽  
Author(s):  
Wilfried Posch ◽  
Marta Bermejo-Jambrina ◽  
Marion Steger ◽  
Christina Witting ◽  
Gabriel Diem ◽  
...  

Importantly, our study highlights an unusual target on DCs—the α chain of complement receptor 4 (CR4) (CD11c)—for therapeutic interventions in HIV-1 treatment. Targeting CD11c on DCs mediated a potent antiviral immune response via clustering of CR4 and CCR5 and subsequent opening of an antiviral recognition pathway in DCs via MAVS.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 713
Author(s):  
Arthur Bienvenu ◽  
Eric Martinez ◽  
Matteo Bonazzi

Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.


Sign in / Sign up

Export Citation Format

Share Document