cell detection
Recently Published Documents


TOTAL DOCUMENTS

1162
(FIVE YEARS 421)

H-INDEX

59
(FIVE YEARS 11)

2022 ◽  
Vol 73 ◽  
pp. 103416
Author(s):  
Fanxin Xu ◽  
Xiangkui Li ◽  
Hang Yang ◽  
Yali Wang ◽  
Wei Xiang
Keyword(s):  

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jeladhara Sobhanan ◽  
Yuta Takano ◽  
Sakiko Sugino ◽  
Eri Hirata ◽  
Shohei Yamamura ◽  
...  

AbstractAmid the COVID-19 pandemic, cancer continues to be the most devastating disease worldwide. Liquid biopsy of circulating tumor cells (CTCs) has recently become a painless and noninvasive tool for obtaining carcinoma cell samples for molecular profiling. Here, we report efficient detection and collection of cancer cells in blood samples by combining stem cell antigen (CD44)-specific immunosilica particles and immunofluorescent quantum dots with spectrally and temporally resolved single-photon counting. We accurately detect 1–10 cells among 100 cancer cells of the breast, lungs, or cervix in 1 mL blood samples. In addition, the bright and narrowband emission of CdSe/ZnS quantum dots enables temporally and spectrally resolved photon counting for multiplexed cancer cell detection. The cancer cell-specific and large immunosilica particles helped us collect the specific cells. We validate the detection efficiency and multimodality of this strategy by time-stamped and energy-dispersed single-photon counting of orange- and red-emitting quantum dots and green-fluorescing nuclei stained with Syto-13/25 dye. Thus, the present work highlights the prospects of multimodal CTC detection for noninvasive cancer screening and postsurgical or therapeutic follow-up.


2022 ◽  
Author(s):  
Tong Wang ◽  
Junfeng Jiang ◽  
Kun Liu ◽  
Shuang Wang ◽  
Panpan Niu ◽  
...  

Abstract We proposed and demonstrated a flexible, endoscopic, and minimally invasive coherent anti-Raman Stokes scattering (CARS) measurement method for single-cell application, employing a tapered optical fiber probe. A few-mode fiber (FMF), whose generated four-wave mixing band is out of CARS signals, was selected to fabricate tapered optical fiber probes, deliver CARS excitation pulses, and collect CARS signals. The adiabatic tapered fiber probe with a diameter of 11.61 µm can focus CARS excitation lights without mismatch at the focal point. The measurements for proof-of-concept were made with methanol, ethanol, cyclohexane, and acetone injected into simulated cells. The experimental results show that the tapered optical fiber probe can detect carbon-hydrogen (C–H) bond-rich substances and their concentration. To our best knowledge, this optical fiber probe provides the minimum size among probes for detecting CARS signals. These results pave the way for minimally invasive live-cell detection in the future.


2022 ◽  
Author(s):  
Kambadur Gundu Ananthamurthy ◽  
Upinder S Bhalla

Hippocampal CA1 cells take part in reliable, time-locked activity sequences in tasks that involve an association between stimuli, in a manner that tiles the interval between the stimuli. Such cells have been termed time cells. Here we adopt a first-principles approach to comparing diverse analysis and detection algorithms for identifying time cells. We developed a resource for generating synthetic activity datasets using calcium signals recorded in vivo from mouse hippocampus using 2-photon imaging, for template response waveforms. We assigned known, ground truth values for properties of time cells in this synthetic dataset, including noise, timing imprecision, hit-trial ratio and calcium event width. These datasets were the input to a pipeline for testing multiple algorithms for time cell detection to determine the conditions for which they were best suited, and evaluate their effective operating ranges. We find that most algorithms are sensitive to noise. Only a few methods benefit from larger event widths. Reassuringly, most methods are insensitive to timing imprecision, and exhibit successful time cell detection even at low hit trial ratios. Importantly, all methods show good concordance in identifying cells as time cells.


Author(s):  
Qin Zeng ◽  
Qingya Wei ◽  
Jiarong Luo ◽  
Yong Qian ◽  
Minghui Yang ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Laura Bourlard ◽  
Yannick Manigart ◽  
Catherine Donner ◽  
Guillaume Smits ◽  
Julie Désir ◽  
...  

Abstract Objectives The possibility to isolate fetal cells from pregnant women cervical samples has been discussed for five decades but is not currently applied in clinical practice. This study aimed at offering prenatal genetic diagnosis from fetal cells obtained through noninvasive exocervical sampling and immuno-sorted based on expression of HLA-G. Methods We first developed and validated robust protocols for cell detection and isolation on control cell lines expressing (JEG-3) or not (JAR) the HLA-G antigen, a specific marker for extravillous trophoblasts. We then applied these protocols to noninvasive exocervical samples collected from pregnant women between 6 and 14 weeks of gestational age. Sampling was performed through insertion and rotation of a brush at the ectocervix close to the external os of the endocervical canal. Finally, we attempted to detect and quantify trophoblasts in exocervical samples from pregnant women by ddPCR targeting the male SRY locus. Results For immunohistochemistry, a strong specific signal for HLA-G was observed in the positive control cell line and for rare cells in exocervical samples, but only in non-fixative conditions. HLA-G positive cells diluted in HLA-G negative cells were isolated by flow cytometry or magnetic cell sorting. However, no HLA-G positive cells could be recovered from exocervical samples. SRY gene was detected by ddPCR in exocervical samples from male (50%) but also female (27%) pregnancies. Conclusions Our data suggest that trophoblasts are too rarely and inconstantly present in noninvasive exocervical samples to be reliably retrieved by standard immunoisolation techniques and therefore cannot replace the current practice for prenatal screening and diagnosis.


Author(s):  
Mrs. R. Kavitha ◽  
Dr. N. Viswanathan

A vigorous disease is bone cancer results in deaths of many people. The identification and classification system must be done at its early stage to diagnose. The early detection plays an important role to safe guard the patient from death. And also cancer categorization is one of the toughest tasks in clinical analysis. This paper deals with MR images of various patients used to identify the tumor and classify cancer using Artificial Neural Network algorithm. The proposed methodology uses filtering as preprocessing techniques followed by gray conversion and other image processing methods like edge detection, morphological operation, segmentation, feature extraction and classification are prepared for the identification of bone cancer. By this method time required is reduced for identification and classification of bone cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Yuqing Wu ◽  
Guangming Xiao ◽  
Peilan Zong ◽  
Guoqiang Jiang ◽  
Yongmei Liao ◽  
...  

Objective. To explore the clinical value of the specific plasma cell detection and specific T lymphocyte detection test in diagnosing hypersensitivity caused by antituberculosis drugs. Methods. A total of 266 patients with pulmonary tuberculosis who developed hypersensitivity during the treatment of primary pulmonary tuberculosis in our hospital and 266 patients without hypersensitivity during the treatment of pulmonary tuberculosis in our hospital were selected as the control group. The admission time is from January 2013 to June 2020. The specific plasma cell test and specific T lymphocyte test were used as the criteria to determine which drugs induced hypersensitivity, and the diagnostic value of these two methods in the diagnosis of hypersensitivity induced by four first-line antituberculosis drugs (isoniazid (INH), ethambutol (EMB), rifampicin (RFP), and pyrazinamide (PZA)) was analyzed. Results. The sensitivity of the specific plasma cell test in the diagnosis of hypersensitivity induced by INH, EMB, RFP, and PZA was 63.42%, 51.20%, 47.81%, and 56.37%, respectively, and the specificity was 95.33%, 99.87%, 96.52%, and 99.99%, respectively. The sensitivity of the specific T lymphocyte test in the diagnosis of hypersensitivity induced by INH, EMB, RFP, and PZA was 66.47%, 52.88%, 49.91%, and 58.54%, respectively, and the specificity was 97.28%, 99.99%, 98.38%, and 100.00%, respectively. Conclusion. The specific plasma cell test and specific T lymphocyte test have high specificity in the diagnosis of hypersensitivity caused by antituberculosis drugs, and the specific T lymphocyte test is better than the specific plasma cell test. It is of great significance to guide the clinical application of antituberculosis drugs.


Sign in / Sign up

Export Citation Format

Share Document