nonlinear dimensionality reduction
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 64)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongbin Liu ◽  
Jingjie Wang ◽  
Wei Bai

Dimensionality reduction of images with high-dimensional nonlinear structure is the key to improving the recognition rate. Although some traditional algorithms have achieved some results in the process of dimensionality reduction, they also expose their respective defects. In order to achieve the ideal effect of high-dimensional nonlinear image recognition, based on the analysis of the traditional dimensionality reduction algorithm and refining its advantages, an image recognition technology based on the nonlinear dimensionality reduction method is proposed. As an effective nonlinear feature extraction method, the nonlinear dimensionality reduction method can find the nonlinear structure of datasets and maintain the intrinsic structure of data. Applying the nonlinear dimensionality reduction method to image recognition is to divide the input image into blocks, take it as a dataset in high-dimensional space, reduce the dimension of its structure, and obtain the low-dimensional expression vector of its eigenstructure so that the problem of image recognition can be carried out in a lower dimension. Thus, the computational complexity can be reduced, the recognition accuracy can be improved, and it is convenient for further processing such as image recognition and search. The defects of traditional algorithms are solved, and the commodity price recognition and simulation experiments are carried out, which verifies the feasibility of image recognition technology based on the nonlinear dimensionality reduction method in commodity price recognition.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Apimuk Sornsaeng ◽  
Ninnat Dangniam ◽  
Pantita Palittapongarnpim ◽  
Thiparat Chotibut

2021 ◽  
Author(s):  
Bramsh Qamar Chandio ◽  
Tamoghna Chattopadhyay ◽  
Conor Owens-Walton ◽  
Julio E Villalon Reina ◽  
Leila Nabulsi ◽  
...  

Whole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised streamline clustering and tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, such as t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. Quantitative comparisons with expertly delineated tracts show the promise of the approach. This approach can be deployed as a filtering step after tracts are extracted.


2021 ◽  
Author(s):  
Hung Le ◽  
Sushant Kumar ◽  
Nathan May ◽  
Ernesto Martinez-Baez ◽  
Ravishankar Sundararaman ◽  
...  

Identifying collective variables for chemical reactions is essential to reduce the 3$N$ dimensional energy landscape into lower dimensional basins and barriers of interest. However in condensed phase processes, the non-meaningful motions of bulk solvent often overpower the ability of dimensionality reduction methods to identify correlated motions that underpin collective variables. Yet solvent can play important indirect or direct roles in reactivity and much can be lost through treatments that remove or dampen solvent motion. This has been amply demonstrated within principal component analysis, although less is known about the behavior of nonlinear dimensionality reduction methods, e.g., UMAP, that have become more popular recently. The latter presents an interesting alternative to linear methods though often at the expense of interpretability. This work presents distance attenuated projection methods of atomic coordinates that facilitate the application of both PCA and UMAP to identify collective variables in solution, and further the specific identity of solvent molecules that participate in chemical reactions. The performance of both methods is examined in detail for two reactions where the explicit solvent plays very different roles within the collective variables. The first reaction consists of the dynamic exchange of a cation about a polyhydroxy anion that is facilitated by waters of solvation, while the second reaction consists of a nucleophilic attack of water upon ethylene to initiate cis/trans isomerization. When applied to raw data, both PCA and UMAP representations are dominated by bulk solvent motions. On the other hand, when applied to data preprocessed by our attenuated projection methods, both PCA and UMAP identify the appropriate collective variables in solution.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1679
Author(s):  
Álvaro Anzueto-Ríos ◽  
Felipe Gómez-Castañeda ◽  
Luis M. Flores-Nava ◽  
José A. Moreno-Cadenas

This work deals with the presentation of a spiking neural network as a means for efficiently solving the reduction of dimensionality of data in a nonlinear manner. The underneath neural model, which can be integrated as neuromorphic hardware, becomes suitable for intelligent processing in edge computing within Internet of Things systems. In this sense, to achieve a meaningful performance with a low complexity one-layer spiking neural network, the training phase uses the metaheuristic Artificial Bee Colony algorithm with an objective function from the principals in the machine learning science, namely, the modified Stochastic Neighbor Embedding algorithm. To demonstrate this fact, complex benchmark data were used and the results were compared with those generated by a reference network with continuous-sigmoid neurons. The goal of this work is to demonstrate via numerical experiments another method for training spiking neural networks, where the used optimizer comes from metaheuristics. Therefore, the key issue is defining the objective function, which can relate optimally the information at both sides of the spiking neural network. Certainly, machine learning techniques have advanced in defining efficient loss functions that can become suitable objective function candidates in the metaheuristic training phase. The practicality of these ideas is shown in this article. We use MSE values for evaluating the relative quality of the results and also co-ranking matrices.


Sign in / Sign up

Export Citation Format

Share Document