electron donor and acceptor
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 25)

H-INDEX

33
(FIVE YEARS 2)

2022 ◽  
pp. 1-19
Author(s):  
Ziba Tavakoli ◽  
Masoome Sheikhi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani ◽  
Batool Sheikhi ◽  
...  

In this research, a DFT calculation was performed for study to investigate the encapsulation of the anticancer drug Ibrance into CNT(8,8-7) by using M062X/6-311G * level of theory in the solvent water. TD-DFT method was used to compute the electronic spectra of the Ibrance drug, CNT(8,8-7) and complex CNT(8,8-7)/Ibrance in aqueous medium for the study of non-bonded interaction effect. The non-bonded interaction effects of Ibrance drug with CNT(8,8-7) on the electronic properties and natural charges have been also studied. The results display the change in title parameters after process adsorption. According to NBO results, the molecule Ibrance and CNT(8,8-7) play as both electron donor and acceptor at the complex CNT(8,8-7)/Ibrance. Charge transfer, on the other hand, occurs between the bonding, antibonding, or nonbonding orbitals of Ibrance drug and CNT (8,8-7). According to QTAIM analysis and the LOL and ELF values, all intermolecular bonds in the complex are non-covalent in nature. As a result, CNT(8,8-7) can be thought of as a drug delivery system for transporting Ibrance as an anticancer drug within biological systems.


2022 ◽  
Author(s):  
Nan Gao ◽  
Zexu Xue ◽  
Jiarui Yu ◽  
Shuai Chen ◽  
Ling Zang

A novel synthesis method for fabricating large area, uniform bulk-heterojunction film with electron donor and acceptor materials homogeneously distributed each other forming a bicontinuous network morphology is reported. The acceptor...


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3417
Author(s):  
Yu Wang ◽  
Cairong Zhang ◽  
Bing Yang ◽  
Lihua Yuan ◽  
Jijun Gong ◽  
...  

Molecular engineering plays a critical role in the development of electron donor and acceptor materials for improving power conversion efficiency (PCE) of organic photovoltaics (OPVs). The halogenated acceptor materials in OPVs have shown high PCE. Here, to investigate the halogenation mechanism and the effects on OPV performances, based on the density functional theory calculations with the optimally tuned screened range-separated hybrid functional and the consideration of solid polarization effects, we addressed the halogenation effects of acceptor ITIC, which were modeled by bis-substituted ITIC with halogen and coded as IT-2X (X = F, Cl, Br), and PBDB-T:ITIC, PBDB-T:IT-2X (X = F, Cl, Br) complexes on their geometries, electronic structures, excitations, electrostatic potentials, and the rate constants of charge transfer, exciton dissociation (ED), and charge recombination processes at the heterojunction interface. The results indicated that halogenation of ITIC slightly affects molecular geometric structures, energy levels, optical absorption spectra, exciton binding energies, and excitation properties. However, the halogenation of ITIC significantly enlarges the electrostatic potential difference between the electron acceptor and donor PBDB-T with the order from fluorination and chlorination to bromination. The halogenation also increases the transferred charges of CT states for the complexes. Meanwhile, the halogenation effects on CT energies and electron process rates depend on different haloid elements. No matter which kinds of haloid elements were introduced in the halogenation of acceptors, the ED is always efficient in these OPV devices. This work provides an understanding of the halogenation mechanism, and is also conducive to the designing of novel materials with the aid of the halogenation strategy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mao Wang ◽  
Manuel Hertzog ◽  
Karl Börjesson

AbstractExciton-polaritons are hybrid light-matter states resulting from strong exciton-photon coupling. The wave function of the polariton is a mixture of light and matter, enabling long-range energy transfer between spatially separated chromophores. Moreover, their delocalized nature, inherited from the photon component, has been predicted to enhance exciton transport. Here, we strongly couple an organic heterojunction consisting of energy/electron donor and acceptor materials to the same cavity mode. Using time-resolved spectroscopy and optoelectrical characterization, we show that the rate of exciton harvesting is enhanced with one order of magnitude and the rate of energy transfer in the system is increased two- to threefold in the strong coupling regime. Our results exemplify two means of efficiently channeling excitation energy to a heterojunction interface, where charge separation can occur. This study opens a new door to increase the overall efficiency of light harvesting systems using the tool of strong light-matter interactions.


2021 ◽  
Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

Abstract Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region. Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration.


2021 ◽  
Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

<p>Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region.</p><p> Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration..</p>


2021 ◽  
Author(s):  
Kazuya Jinnai ◽  
Ryota Kabe ◽  
Zesen Lin ◽  
Chihaya Adachi

<p>Organic long-persistent-luminescent (OLPL) materials that exhibit hour-long photoluminescence have advantages over inorganic materials, such as a sustainability, flexibility, and processability. The OLPL materials store the absorbed energy in an intermediate charge-separated state, but this charge-separated state is unstable to oxygen and does not exhibit persistent luminescence in air. The excitation wavelength of OLPL can be controlled by electron-donor and -acceptor materials, but previous materials require absorption mainly in the ultraviolet region.</p><p> Here, we show OLPL systems that exhibit a persistent luminescence in air and can be excited by a wavelength from 300-nm to 600-nm. By using cationic photoredox catalysts as an electron-accepting dopant, stable charge-separated states are generated by the hole-diffusion process, as opposed to previous OLPL systems that depend on electron diffusion. By using a hole-diffusion mechanism and reducing the energy level of the lowest unoccupied molecular orbital, the OLPL system becomes stable in air and can be excited by visible light. The addition of hole-trapping material increases the LPL duration..</p>


2021 ◽  
Vol 17 ◽  
Author(s):  
Siyamak Shahab ◽  
Masoome Sheikhi ◽  
Mehrnoosh Khaleghian ◽  
Marina Murashko ◽  
Mahin Ahmadianarog ◽  
...  

: For the first time in the present study, the non-bonded interaction of the Coniine (C8H17N) with carbon monoxide (CO) was investigated by density functional theory (DFT/M062X/6-311+G*) in the gas phase and solvent water. The adsorption of the CO over C8H17N was affected on the electronic properties such as EHOMO, ELUMO, the energy gap between LUMO and HOMO, global hardness. Furthermore, chemical shift tensors and natural charge of the C8H17N and complex C8H17N/CO were determined and discussed. According to the natural bond orbital (NBO) results, the molecule C8H17N and CO play as both electron donor and acceptor at the complex C8H17N/CO in the gas phase and solvent water. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules C8H17N and CO. We have also investigated the charge distribution for the complex C8H17N/CO by molecular electrostatic potential (MEP) calculations using the M062X/6-311+G* level of theory. The electronic spectra of the C8H17N and complex C8H17N/CO were calculated by time dependent DFT (TD-DFT) for investigation of the maximum wavelength value of the C8H17N before and after the non-bonded interaction with the CO in the gas phase and solvent water. Therefore, C8H17N can be used as strong absorbers for air purification and reduce environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document