d4 receptor
Recently Published Documents


TOTAL DOCUMENTS

675
(FIVE YEARS 45)

H-INDEX

67
(FIVE YEARS 4)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Alicia Rivera ◽  
Diana Suárez-Boomgaard ◽  
Cristina Miguelez ◽  
Alejandra Valderrama-Carvajal ◽  
Jérôme Baufreton ◽  
...  

Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of μ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.


ACS Omega ◽  
2021 ◽  
Author(s):  
Ritu Prajapati ◽  
Su Hui Seong ◽  
Pradeep Paudel ◽  
Se Eun Park ◽  
Hyun Ah Jung ◽  
...  

PSYCHOLOGIA ◽  
2021 ◽  
Author(s):  
Keiko ISHII ◽  
Takahiko MASUDA ◽  
Masahiro MATSUNAGA ◽  
Yasuki NOGUCHI ◽  
Hidenori YAMASUE ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yifei Feng ◽  
Yan Lu

Dopamine (DA) receptor, a significant G protein-coupled receptor, is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptor families, with further formation of homodimers, heteromers, and receptor mosaic. Increasing evidence suggests that the immune system can be affected by the nervous system and neurotransmitters, such as dopamine. Recently, the role of the DA receptor in inflammation has been widely studied, mainly focusing on NLRP3 inflammasome, NF-κB pathway, and immune cells. This article provides a brief review of the structures, functions, and signaling pathways of DA receptors and their relationships with inflammation. With detailed descriptions of their roles in Parkinson disease, inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, this article provides a theoretical basis for drug development targeting DA receptors in inflammatory diseases.


2021 ◽  
Author(s):  
Shuo Gu ◽  
Matthew S. Smith ◽  
Ying Yang ◽  
John J. Irwin ◽  
Brian K. Shoichet

ABSTRACTWhile small molecule internal strain is crucial to molecular docking, using it in evaluating ligand scores has remained elusive. Here, we investigate a technique that calculates strain using relative torsional populations in the Cambridge Structural Database, enabling fast pre-calculation of these energies. In retrospective studies of large docking screens of the dopamine D4 receptor and of AmpC β-lactamase, where close to 600 docking hits were tested experimentally, including such strain energies improved hit rates by preferentially reducing high-scoring decoy molecules that were strained. In a 40 target subset of the DUD-E benchmark, we found two thresholds that usefully distinguished between ligands and decoys: one based on the total strain energy of the small molecules, and one based on the maximum strain allowed for any given torsion within them. Using these criteria, about 75% of the benchmark targets had improved enrichment after strain filtering. Relying on pre-calculated population distributions, this approach is rapid, taking less than 0.04 second to evaluate a conformation on a standard core, making it pragmatic for pre-calculating strain in even ultra-large libraries. Since it is scoring function agnostic, it may be useful to multiple docking approaches; it is openly available at http://tldr.docking.org


2021 ◽  
Author(s):  
Lewis Martin

<p>There is renewed interest in docking campaigns for ligand-discovery since the advent of ultra-large scale virtual libraries. Using brute-force search, the scale of the libraries suggests highly parallelized compute should be used to avoid years-long computations. This paper reports a re-analysis of docking data from an ultra-large docking campaign at the D4 receptor and AmpC beta lactamase, and demonstrates large reductions in computation time to identify the top-ranked ligands. A search of ‘baseline’ featurizations shows that logistic regression on Morgan fingerprints with pharmacophoric atom invariants can match the reported performance on the same task using message-passing networks. With this approach, an ultra-large docking campaign could be performed in a matter of weeks using consumer-grade CPUs with <i>RDKit </i>and <i>scikit-learn</i>. All code and figures are available at <a href="https://github.com/ljmartin/dockop">https://github.com/ljmartin/dockop</a> </p><br>


2021 ◽  
Author(s):  
Lewis Martin

<p>There is renewed interest in docking campaigns for ligand-discovery since the advent of ultra-large scale virtual libraries. Using brute-force search, the scale of the libraries suggests highly parallelized compute should be used to avoid years-long computations. This paper reports a re-analysis of docking data from an ultra-large docking campaign at the D4 receptor and AmpC beta lactamase, and demonstrates large reductions in computation time to identify the top-ranked ligands. A search of ‘baseline’ featurizations shows that logistic regression on Morgan fingerprints with pharmacophoric atom invariants can match the reported performance on the same task using message-passing networks. With this approach, an ultra-large docking campaign could be performed in a matter of weeks using consumer-grade CPUs with <i>RDKit </i>and <i>scikit-learn</i>. All code and figures are available at <a href="https://github.com/ljmartin/dockop">https://github.com/ljmartin/dockop</a> </p><br>


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249284
Author(s):  
Osama Y. Alshogran ◽  
Laith N. Al-Eitan ◽  
Shoroq M. Altawalbeh ◽  
Hatem A. Aman

Mental illness is prevalent among hemodialysis (HD) patients. Given that the dopaminergic and serotonergic pathways are involved in the etiology of psychiatric disease, this study evaluated the genetic association of dopamine D4 receptor (DRD4) and serotonin transporter (SLC6A4) genes with psychiatric symptom susceptibility among HD patients. Hospital Anxiety and Depression Scale (HADS) was used to assess anxiety and depressive symptoms among patients (n = 265). Genetic polymorphisms of DRD4 (48 bp VNTR) and SLC6A4 (5-HTTLPR VNTR and rs25531) were examined using a conventional polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique, as appropriate. Significant differences were observed in the distribution of 5-HTTLPR genotypes, SLC6A4 tri-allelic-phased genotype, and DRD4-Exon III VNTR genotypes/alleles between patients with anxiety symptoms versus those with normal/borderline conditions (p<0.05). Binary logistic regression analyses showed that the heterozygous 4,5 VNTR genotype of DRD4 was associated with a higher risk of anxiety symptoms after adjusting for other covariates (odds ratio = 4.25, p = 0.028). None of the studied polymorphisms was linked to depression in HD patients. Collectively, the current findings provide genetic clues to psychopathology in HD patients and suggest that the DRD4 exon III VNTR polymorphism is involved in the etiology of anxiety in this patient population.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Catherine Paquet ◽  
Andre Krumel Portella ◽  
Spencer Moore ◽  
Yu Ma ◽  
Alain Dagher ◽  
...  

Abstract Background Evidence for the impact of the food retailing environment on food-related and obesity outcomes remains equivocal, but only a few studies have attempted to identify sub-populations for whom this relationship might be stronger than others. Genetic polymorphisms related to dopamine signalling have been associated with differences in responses to rewards such as food and may be candidate markers to identify such sub-populations. This study sought to investigate whether genetic variation of the dopamine D4 receptor gene (DRD4 exon III 48 bp VNTR polymorphism) moderated the association between local exposure to food retailers on BMI and diet in a sample of 4 to12-year-old children. Methods Data collected from a birth cohort and a community cross-sectional study conducted in Montreal, Canada, were combined to provide DRD4 VNTR polymorphism data in terms of presence of the 7-repeat allele (DRD4-7R) for 322 children aged between 4 and 12 (M (SD): 6.8(2.8) y). Outcomes were Body Mass Index (BMI) for age and energy density derived from a Food Frequency Questionnaire. Food environment was expressed as the proportion of local food retailers classified as healthful within 3 km of participants’ residence. Linear regression models adjusted for age, sex, income, cohort, and geographic clustering were used to test gene*environment interactions. Results A significant gene*food environment interaction was found for energy density with results indicating that DRD4-7R carriers had more energy dense diets than non-carriers, with this effect being more pronounced in children living in areas with proportionally more unhealthy food retailers. No evidence of main or interactive effects of DRD4 VNTR and food environment was found for BMI. Conclusions Results of the present study suggest that a genetic marker related to dopamine pathways can identify children with potentially greater responsiveness to unhealthy local food environment. Future studies should investigate additional elements of the food environment and test whether results hold across different populations.


Sign in / Sign up

Export Citation Format

Share Document