reorganization energies
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 63)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
nambury surendra babu ◽  
Irene Octavian Riwa

Abstract The current study examined a series of 1,3,5-tris (diphenylamino) benzene derivatives used as hole transport materials in perovskite solar cells (HTM1-HTM9). DFT and TD/DFT with the B3LYP/6-311G basis set used for all calculations. The ground state geometry, frontier molecular orbital (FMO), photoelectric properties and reorganization energies and the absorption spectra were investigated. The energy levels of HOMO and LUMO orbitals were calculated for HTM1-HTM9, compared to all of the compounds under investigation and the spiro-OMeTAD, HTM 8 has the lowest HOMO energy level, indicating a favourable overlap with the MAPbI3 perovskite active layer.


Author(s):  
Jinfeng Chen ◽  
Gerhard König

The correct reproduction of conformational substates of amino acids was tested for the CHARMM Drude polarizable force field. This was achieved by evaluating the reorganization energies for all low lying energy minima occurring in all 15 neutral blocked amino acids on a quantum-mechanical (QM) energy surface at the MP2/cc-pVDZ level. The results indicate that the bonded parameters of the N-acetyl (ACE) and N-Methylamide (CT3) blocking groups lead to significant discrepancies. A reparametrization of five bond angles significantly improved the agreement with the QM energy surface. The corrected Drude force field exhibits almost the same average reorganization energies relative to the MP2 energy surface as the AM1 and PM3 semi-empirical methods.


2021 ◽  
Author(s):  
Yanan Shi ◽  
Yilin Chang ◽  
Kun Lu ◽  
Zhihao Chen ◽  
Jianqi Zhang ◽  
...  

Abstract Minimizing the energy loss is of critical importance in the pursuit of attaining high-performance organic solar cells (OSCs). Interestingly, electron-vibration coupling (namely reorganization energy) plays a crucial role in the photo-electric conversion processes. However, a molecular understanding of the relationship between the reorganization energy and the energy loss has rarely been studied. Here, two new acceptors Qx-1 and Qx-2 with quinoxaline (Qx)-containing fused core were designed and synthesized. The results indicate that the reorganization energies of these two acceptors during the photoelectric conversion processes are substantially smaller than the conventional Y6 acceptor, which is beneficial for improving the exciton lifetime and diffusion length, promoting charge transport and reducing the energy loss originating from exciton dissociation and non-radiative recombination. As a result, an outstanding power conversion efficiency (PCE) of 18.2% with high Voc above 0.93 V in the PM6:Qx-2 blend, accompanying a significantly reduced energy loss of 0.48 eV. To the best of our knowledge, the obtained energy loss is the smallest for the binary OSCs with PCEs over 16% reported to date. This work underlines the importance of the reorganization energy in achieving small energy loss in organic active materials and paves a new way to obtain high-performance OSCs.


Author(s):  
Serguei Fomine ◽  
Wilmer Esteban Vallejo Narváez ◽  
César Gabriel Vera de la Garza ◽  
Luis Daniel Solís Rodríguez

Oligomeric approach has been originally developed to study electronic properties of conjugated polymers. This approach allows to access electronic properties of 1D systems otherwise difficult to calculate. We successfully extended this method to study electronic properties of 2D materials. In this review we summarize our recent work in this area. It has been established that large graphene nanoflake possess multiconfigurational singlet or even high spin ground state. Doping of 2D systems has also been explored and it has been demonstrated that doping allows to tune their electronic properties, including ionization potentials, electron affinities, reorganization energies and the very nature of the ground state. The electronic properties of novel 2D allotropies of carbon, phosphorus, germanium and silicon have been studied as well as their complexes with Li. Heterostructures, of different 2D allotropies are readily formed. This is an alternative method for tuning of their electronic properties.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7163
Author(s):  
Karolina Filipowska ◽  
Marek T. Pawlikowski ◽  
Marcin Andrzejak

There is experimental evidence of high vibronic activity that accompanies the allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain two, three, and four furan rings. The absorption and emission spectra of the three lowest oligofurans measured at liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either Density Functional Theory (DFT, with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as a reference the experimental data concerning the electronic absorption and fluorescence for the eight lowest oligofurans, we first analyzed the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we used the best functionals alongside with the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for the verification of the performance of the selected DFT functionals and the CC2 method.


2021 ◽  
Author(s):  
Ke Chen ◽  
Christian Kunkel ◽  
Karsten Reuter ◽  
Johannes T. Margraf

The molecular reorganization energy $\lambda$ strongly influences the charge carrier mobility of organic semiconductors and is therefore an important target for molecular design. Machine learning (ML) models generally have the potential to strongly accelerate this design process (e.g. in virtual screening studies) by providing fast and accurate estimates of molecular properties. While such models are well established for simple properties (e.g. the atomization energy), $\lambda$ poses a significant challenge in this context. In this paper, we address the questions of how ML models for $\lambda$ can be improved and what their benefit is in high-throughput virtual screening (HTVS) studies. We find that, while improved predictive accuracy can be obtained relative to a semiempirical baseline model, the improvement in molecular discovery is somewhat marginal. In particular, the ML enhanced screenings are more effective in identifying promising candidates but lead to a less diverse sample. We further use substructure analysis to derive a general design rule for organic molecules with low $\lambda$ from the HTVS results.


2021 ◽  
Author(s):  
Dominikus Brian ◽  
Xiang Sun

In this work, we develop a machine learning (ML) strategy to map molecular structure to condensed-phase charge transfer (CT) properties including CT rate constants, energy levels, electronic couplings, energy gaps, reorganization energies, and reaction free energies, which are called CT fingerprints. The CT fingerprints of selected landmark structures covering the conformation space of an organic photovoltaic molecule dissolved in explicit solvent are computed and used to train ML models using kernel ridge regression. The ML models show high predictive power with R2>0.97, and both mean absolute error and root mean square error within chemical accuracy. The CT landscape for millions of molecular dynamics sampled structures is thus constructed, which allows for instant prediction of CT rate properties given any molecular structure. The unprecedented CT landscape will shed light on real-time CT dynamics in nanoscale and mesoscale condensed-phase systems, and the optimal fabrication design for homogeneous and heterogeneous optoelectronic devices.


2021 ◽  
Vol 2063 (1) ◽  
pp. 012002
Author(s):  
Dalal H Alsawad ◽  
Ali A Al-Riyahee ◽  
Ali J Hameed

Abstract A series of 4-(para-substituted phenyl)-1,2,3-selenadiazole adducts of [VO(acac)2] were studied by density functional theory (DFT) calculations. The 4-(para-substituted phenyl)-1,2,3-selenadiazole molecules have been selected to be bound with vanadium atom in [VO(acac)2] through Se, N2 and N3. The resulting adducts have been investigated in two geometries (cis and trans) in order to show the effect of such structural change on the electronic properties of the studied adducts. The optimized geometries, (binding and reorganization) energies and the spatial distribution of the highest molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the adducts are presented and discussed.


Author(s):  
Karolina Filipowska ◽  
Marek T. Pawlikowski ◽  
Marcin Andrzejak

There is experimental evidence of high vibronic activity that accompanies the strongly allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain 2,3, and 4 furan rings. The absorption and emission spectra of the three lowest oligofurans measured in liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either DFT (with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as reference the experimental data concerning the electronic absorption and fluorescence for the 8 lowest oligofurans we first analyze the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we use the best functionals alongside the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for verification of the performance of the selected DFT functionals and the CC2 method.


Sign in / Sign up

Export Citation Format

Share Document