artificial ageing
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 112)

H-INDEX

26
(FIVE YEARS 4)

Author(s):  
RABIA MUKHTAR ◽  
NAVEED AFZAL ◽  
MOHSIN RAFIQUE ◽  
AMEEQ FAROOQ

Artificial ageing of Al-7075 alloy was performed in a muffle furnace at different temperatures ranging from 120∘C to 190∘C for 3[Formula: see text]h. The formation of MgZn2 precipitates in the aged alloy was confirmed through the XRD data. The lattice parameter and crystallite size of aluminum were increased with the increase of the ageing temperature. The scanning electron microscopy results validated the precipitates of different shapes and sizes in the aged samples. The number density of the precipitates was found to be maximum at 170∘C. The Vickers hardness of Al-7075 alloy was increased from 125[Formula: see text]HV to 172[Formula: see text]HV with an increase of the ageing temperature from 120∘C to 170∘C and then decreased at 190∘C. The electrochemical tests of the un-aged and aged samples (in 3.5[Formula: see text]wt.% NaCl solution) showed a decrease in the corrosion rate (0.003[Formula: see text]mm/y) and an increase in the corrosion potential ([Formula: see text]137[Formula: see text]mV) of the alloy upon ageing up to 150∘C, indicating improvement in its corrosion resistance.


Author(s):  
Xingpu Zhang ◽  
Meng Liu ◽  
Jiangwei Wang ◽  
Jixue Li ◽  
John Banhart

AbstractBoth Sn addition and pre-ageing are known to be effective in maintaining the artificial ageing potential after natural ageing of Al–Mg–Si alloys. In this study, the combined effects of Sn addition and pre-ageing at 100 °C or 180 °C on natural secondary ageing and subsequent artificial ageing of an alloy AA6014 were investigated using hardness, electrical resistivity, differential scanning calorimetry and transmission electron microscopy characterizations. It is found that pre-ageing can suppress natural secondary ageing and improve the artificial ageing hardening kinetics and response after 1 week of natural secondary ageing in both alloys with and without Sn addition. The effect of pre-ageing at 100 °C is more pronounced in the Sn-free alloy while the combination of pre-ageing at 180 °C and adding Sn shows superiority in suppressing natural secondary ageing and thus avoiding the undesired hardening before artificial ageing. Moreover, when natural ageing steps up to 8 h are applied before pre-ageing at 100 °C, the effect of pre-ageing in Sn-added alloy can be further improved. The influence of Sn on vacancies at different ageing temperatures is discussed to explain the observed phenomena. Graphical abstract


2022 ◽  
Vol 317 ◽  
pp. 125834
Author(s):  
João Luís Parracha ◽  
Giovanni Borsoi ◽  
Inês Flores-Colen ◽  
Rosário Veiga ◽  
Lina Nunes

2021 ◽  
Author(s):  
David Ov ◽  
Rolf Breitenbücher ◽  
Martin Radenberg ◽  
Dominik Twer

Joint sealants as indispensable filling systems in jointed plain concrete pavements (JPCP) are permanently exposed to various stresses during their service life, which often leads to a replacement of the sealing after approx. 7 to 10 years. Aside from seasonal unsteady climatic changes, the cyclical stresses caused by traffic and the ageing of joint sealants are especially significant. Considering the rising number of damages that occur within the overall "joint" system, an increased demand for a durable solution is requested as it is a relevant element for the life cycle costs of concrete pavements. In this context, a testing and ageing method was developed which comprises of the entire "joint" system, including the saw-cut concrete joint flanks, the primer as well as the joint sealant. This procedure depicts the decisive scenarios of in-situ stresses and allows the characterization of joint sealants. For this purpose, specimens were subjected to horizontal and vertical loads (static/cyclic) as well as to various ageing effects (temperature conditioning, UV-conditioning and freeze-thaw-cycles). After conditioning, a significant influence of the artificial ageing on the residual strength was observed in the tensile/shear tests. By comparing the artificially aged samples tested in the laboratory with extracted and in-situ aged samples, a reliable correlation was determined. Considering these system tests an initial approach was established which enables the evaluation of joint sealants in both unaged and artificially aged conditions on the basis of scientific parameters and limits.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Katarzyna Ciacka ◽  
Marcin Tyminski ◽  
Agnieszka Gniazdowska ◽  
Urszula Krasuska

Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.


2021 ◽  
Vol 5 (12) ◽  
pp. 327
Author(s):  
Dhaifallah Alqarni ◽  
Ali Alghamdi ◽  
Amr Saad ◽  
Abdullah Ali H. Alzahrani ◽  
Keiichi Hosaka

There has been a great tendency toward using resin composite in dentistry and exploring nano-hardness, elastic modulus, and effect of polishing on its mechanical properties after its artificial ageing. This study aimed to evaluate the effect of surface polishing of four different resin composites on their nano-hardness and elastic modulus. This effect was tested right after light curing of composite resin and after its artificial ageing (immersion in alcoholic medium). Nanoindentation test preparations, surface roughness, surface hardness, and scanning electron microscope were conducted across the four different resin composites: Clearfil AP-X (APX), Estelite Sigma Quick (ESQ), Beautifil II (BE2), and FiltekTM Supreme Ultra Universal restorative (FSU). We found that difference in fillers load and particle size are amongst the factors influencing hardness and modulus of elasticity. The APX is the highest in term of hardness due to fillers load and size while the ESQ is the lowest because all fillers in nano size and distributed homogenously. The significance of surface polishing of the studied resin composite restorations was highlighted. Future research may focus on exploring survival rate of polished and non-polished composite surfaces with emphasis on measuring degree of conversion and impacts of polished and non-polished surfaces on the individuals’ oral health quality of life.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7580
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Marta Grochowicz

The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.


Author(s):  
E. A. Yakovleva ◽  
A. V. Larionov ◽  
G. D. Motovilina ◽  
E. I. Khlusova

The operating conditions of welded structures of shipbuilding steels, including operation at northern latitudes, determine high requirements for their quality. Materials used for such structures should guarantee stable mechanical properties, good processability during hull fabrication and serviceability at subzero temperatures. Strain aging is due to the thermodynamic non-equilibrium of steel structure in its initial state and gradual transition to the equilibrium state provided the diffusion mobility of interstitial atoms is sufficient. In unfavorable conditions, this can lead to the degradation of properties during processing (cold straightening, bending, welding), operation or long-term storage. The paper studies the probability of natural and artificial ageing processes in steels of different chemical compositions due to bulk diffusion and carbon dislocation core diffusion (dislocation pipe diffusion). The effect of strain ageing on mechanical properties and the CTOD parameter value has been examined.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4102
Author(s):  
Liliana Porojan ◽  
Flavia Roxana Toma ◽  
Roxana Diana Vasiliu ◽  
Florin Topală-Ionel ◽  
Sorin Daniel Porojan ◽  
...  

Considering that the processes of PEEK discoloration caused by either intrinsic or extrinsic factors require elucidation, the aim of this study was to investigate the long-term effect of the combined action of ageing and immersing solutions on the optical properties and color stability of PEEK material, related to surface processing (polishing or glazing). (2) Methods: This study aims to determine the influence of different ageing and staining protocols on optical properties, color changes, and surface roughness of a reinforced PEEK material (bioHPP, Bredent, Senden, Germany). For ageing, specimens were submitted to 5000 cycles in a 55 °C bath and a 5 °C bath filled with distilled water. For staining, thermal cycling was performed in a hot coffee bath (55 °C) and a bath filled with distilled water (37 °C) and in a cold juice bath (5 °C) and a bath filled with distilled water (37 °C). Translucency (TP) and opalescence (OP) parameters were determined, the total color change value (ΔΕ*) was calculated, specimens’ surface roughness was analyzed, and statistical analyses were performed. (3) Results: The mean TP values of the studied samples were in the interval of 1.25–3.60, which is lower than those reported for natural teeth or other aesthetic restoration materials. The OP values of PEEK were registered in the range of 0.27–0.75, being also lower than those of natural teeth or other aesthetic restoration materials. OP has a very strong positive relationship with TP. The mean registered Ra values for all subgroups were below 0.13 µm. Artificial ageing and staining in hot coffee proved to increase the roughness values. (4) Conclusions: The glazing of PEEK has a favorable effect on surface roughness and opalescence, irrespective of the artificial ageing or staining protocols. Artificial ageing damages the color stability and roughness of PEEK, regardless of surface processing, and decreases the translucency and opalescence of glazed surfaces. Immersion in hot coffee leads to perceivable discolorations.


2021 ◽  
Vol 72 (4) ◽  
pp. 381-388
Author(s):  
Mirko Kariz ◽  
Manja Kitek Kuzman ◽  
Milan Šernek

The influence of artificial ageing on bonded heat-treated spruce lamellas was investigated. Heat-treated spruce lamellas with different degrees of thermal modification were bonded with PVAc and MUF and then exposed to 500 artificial weathering cycles, combined with rain, UV and IR radiation. The colour change of the exposed surface, weight change, delamination of the bonded joints and adhesive bond strength were measured. Artificial weathering caused cracking and delamination of the bonded joints and reduced the bond strength of both adhesives. The results show that delamination was higher for PVAc adhesive than MUF, but increased for both adhesives with the temperature of heat treatment of wood. The shear strength of bonds on the exposed side of the samples after the artificial weathering was lower than the average strength of the whole sample.


Sign in / Sign up

Export Citation Format

Share Document