cb1 antagonists
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 0)

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6178
Author(s):  
Saoirse Elizabeth O’Sullivan ◽  
Andrew S. Yates ◽  
Richard K. Porter

The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.


Author(s):  
Aboagyewaah Oppong-Damoah ◽  
Brenda Marie Gannon ◽  
Kevin Sean Murnane

: Alcohol-use disorder (AUD) remains a major public health concern. In recent years, there has been a heightened interest in components of the endocannabinoid system for the treatment of AUD. Cannabinoid type 1 (CB1) receptors have been shown to modulate the rewarding effects of alcohol, reduce the abuse-related effects of alcohol, improve cognition, exhibit anti-inflammatory, and neuroprotective effects, which are all favorable properties of potential therapeutic candidates for the treatment of AUD. However, CB1 agonists have not been investigated for the treatment of AUD because they stimulate the motivational properties of alcohol, increase alcohol intake, and have the tendency to be abused. Preclinical data suggest significant potential for the use of CB1 antagonists to treat AUD; however, a clinical phase I/II trial with SR14716A (rimonabant), a CB1 receptor antagonist/inverse agonist showed that it produced serious neuropsychiatric adverse events such as anxiety, depression, and even suicidal ideation. This has redirected the field to focus on alternative components of the endocannabinoid system, including cannabinoid type 2 (CB2) receptor agonists as a potential therapeutic target for AUD. CB2 receptor agonists are of particular interest because they can modulate the reward pathway, reduce abuse-related effects of alcohol, reverse neuroinflammation, improve cognition, and exhibit anti-inflammatory and neuroprotective effects, without exhibiting the psychiatric side effects seen with CB1 antagonists. Accordingly, this article presents an overview of the studies reported in the literature that have investigated CB2 receptor agonists with regards to AUD and provides commentary as to whether this receptor is a worthy target for continued investigation.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Jimit G. Raghav ◽  
Thomas Van Kralingen ◽  
Hritik Kumar ◽  
Alexandros Makriyannis ◽  
Rajeev I. Desai ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2630 ◽  
Author(s):  
Pankaj Pandey ◽  
Kuldeep Roy ◽  
Haining Liu ◽  
Guoyi Ma ◽  
Sara Pettaway ◽  
...  

Natural products are an abundant source of potential drugs, and their diversity makes them a rich and viable prospective source of bioactive cannabinoid ligands. Cannabinoid receptor 1 (CB1) antagonists are clinically established and well documented as potential therapeutics for treating obesity, obesity-related cardiometabolic disorders, pain, and drug/substance abuse, but their associated CNS-mediated adverse effects hinder the development of potential new drugs and no such drug is currently on the market. This limitation amplifies the need for new agents with reduced or no CNS-mediated side effects. We are interested in the discovery of new natural product chemotypes as CB1 antagonists, which may serve as good starting points for further optimization towards the development of CB1 therapeutics. In search of new chemotypes as CB1 antagonists, we screened the in silico purchasable natural products subset of the ZINC12 database against our reported CB1 receptor model using the structure-based virtual screening (SBVS) approach. A total of 18 out of 192 top-scoring virtual hits, selected based on structural diversity and key protein–ligand interactions, were purchased and subjected to in vitro screening in competitive radioligand binding assays. The in vitro screening yielded seven compounds exhibiting >50% displacement at 10 μM concentration, and further binding affinity (Ki and IC50) and functional data revealed compound 16 as a potent and selective CB1 inverse agonist (Ki = 121 nM and EC50 = 128 nM) while three other compounds—2, 12, and 18—were potent but nonselective CB1 ligands with low micromolar binding affinity (Ki). In order to explore the structure–activity relationship for compound 16, we further purchased compounds with >80% similarity to compound 16, screened them for CB1 and CB2 activities, and found two potent compounds with sub-micromolar activities. Most importantly, these bioactive compounds represent structurally new natural product chemotypes in the area of cannabinoid research and could be considered for further structural optimization as CB1 ligands.


2016 ◽  
Vol 360 (2) ◽  
pp. 300-311 ◽  
Author(s):  
Amey Dhopeshwarkar ◽  
Natalia Murataeva ◽  
Alex Makriyannis ◽  
Alex Straiker ◽  
Ken Mackie
Keyword(s):  

2014 ◽  
Vol 95 (11) ◽  
pp. 2468-2479 ◽  
Author(s):  
Mahsa Shahidi ◽  
Enoch S. E. Tay ◽  
Scott A. Read ◽  
Mehdi Ramezani-Moghadam ◽  
Kazuaki Chayama ◽  
...  

Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.


2013 ◽  
Vol 56 (24) ◽  
pp. 9874-9896 ◽  
Author(s):  
Stephan Röver ◽  
Mirjana Andjelkovic ◽  
Agnès Bénardeau ◽  
Evelyne Chaput ◽  
Wolfgang Guba ◽  
...  

2012 ◽  
Vol 22 (9) ◽  
pp. 4133-4145 ◽  
Author(s):  
Eduardo Hernández-Vázquez ◽  
Oscar Méndez-Lucio ◽  
Francisco Hernández-Luis

2012 ◽  
Vol 1 (4) ◽  
pp. 216-228 ◽  
Author(s):  
Antonia Serrano ◽  
Francisco Javier Pavon ◽  
Juan Suarez ◽  
Miguel Romero-Cuevas ◽  
Elena Baixeras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document