brain dynamics
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 282)

H-INDEX

57
(FIVE YEARS 10)

Author(s):  
James Edward Niemeyer

Epilepsy is often labelled a network disorder, though a common view of seizures holds that they initiate in a singular onset zone before expanding contiguously outward. A recent report by Choy et al. (2021) leverages new tools to study whole-brain dynamics during epileptic seizures originating in the hippocampus. Cell-type-specific kindling and functional imaging revealed how various brain regions were recruited to seizures and uncovered a novel form of migrating seizure core.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Lauren Kupis ◽  
Zachary T. Goodman ◽  
Salome Kornfeld ◽  
Celia Romero ◽  
Bryce Dirks ◽  
...  

Obesity is associated with negative physical and mental health outcomes. Being overweight/obese is also associated with executive functioning impairments and structural changes in the brain. However, the impact of body mass index (BMI) on the relationship between brain dynamics and executive function (EF) is unknown. The goal of the study was to assess the modulatory effects of BMI on brain dynamics and EF. A large sample of publicly available neuroimaging and neuropsychological assessment data collected from 253 adults (18–45 years; mean BMI 26.95 kg/m2 ± 5.90 SD) from the Nathan Kline Institute (NKI) were included (http://fcon_1000.projects.nitrc.org/indi/enhanced/). Participants underwent resting-state functional MRI and completed the Delis-Kaplan Executive Function System (D-KEFS) test battery (1). Time series were extracted from 400 brain nodes and used in a co-activation pattern (CAP) analysis. Dynamic CAP metrics including dwell time (DT), frequency of occurrence, and transitions were computed. Multiple measurement models were compared based on model fit with indicators from the D-KEFS assigned a priori (shifting, inhibition, and fluency). Multiple structural equation models were computed with interactions between BMI and the dynamic CAP metrics predicting the three latent factors of shifting, inhibition, and fluency while controlling for age, sex, and head motion. Models were assessed for the main effects of BMI and CAP metrics predicting the latent factors. A three-factor model (shifting, inhibition, and fluency) resulted in the best model fit. Significant interactions were present between BMI and CAP 2 (lateral frontoparietal (L-FPN), medial frontoparietal (M-FPN), and limbic nodes) and CAP 5 (dorsal frontoparietal (D-FPN), midcingulo-insular (M-CIN), somatosensory motor, and visual network nodes) DTs associated with shifting. A higher BMI was associated with a positive relationship between CAP DTs and shifting. Conversely, in average and low BMI participants, a negative relationship was seen between CAP DTs and shifting. Our findings indicate that BMI moderates the relationship between brain dynamics of networks important for cognitive control and shifting, an index of cognitive flexibility. Furthermore, higher BMI is linked with altered brain dynamic patterns associated with shifting.


2021 ◽  
Author(s):  
Simon R. Steinkamp ◽  
Gereon R. Fink ◽  
Simone Vossel ◽  
Ralph Weidner

2021 ◽  
Author(s):  
Pok Him Siu ◽  
Eli J Muller ◽  
Valerio Zerbi ◽  
Kevin Aquino ◽  
Ben D. Fulcher

New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes (including where all brain regions are confined to a stable fixed point) where regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.


2021 ◽  
Author(s):  
Anita Monteverdi ◽  
Fulvia Palesi ◽  
Alfredo Costa ◽  
Paolo Vitali ◽  
Anna Pichiecchio ◽  
...  

Brain pathologies are based on microscopic changes in neurons and synapses that reverberate into large scale networks altering brain dynamics and functional states. An important yet unresolved issue concerns the impact of patients excitation/inhibition profiles on neurodegenerative diseases including Alzheimer's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. In this work we used a simulation platform, The Virtual Brain, to simulate brain dynamics in healthy controls and in Alzheimer's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis patients. The brain connectome and functional connectivity were extracted from 3T-MRI scans and The Virtual Brain nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of the excitatory/inhibitory balance. The integration of cerebro-cerebellar loops improved the correlation between experimental and simulated functional connectivity, and hence The Virtual Brain predictive power, in all pathological conditions. The Virtual Brain biophysical parameters differed between clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer's disease and stronger NMDA (N-methyl-D-aspartate) receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These physio-pathological parameters allowed an advanced analysis of patients' state. In backward regressions, The Virtual Brain parameters significantly contributed to explain the variation of neuropsychological scores and, in discriminant analysis, the combination of The Virtual Brain parameters and neuropsychological scores significantly improved discriminative power between clinical conditions. Eventually, cluster analysis provided a unique description of the excitatory/inhibitory balance in individual patients. In aggregate, The Virtual Brain simulations reveal differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.


2021 ◽  
Author(s):  
Md Mahfuzur Rahman ◽  
Usman Mahmood ◽  
Noah Lewis ◽  
Harshvardhan Gazula ◽  
Alex Fedorov ◽  
...  

Abstract Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Yet, the difficulty of reliable training on high-dimensional low sample size datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this work, we introduce a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. Results successfully demonstrate that the proposed framework enables learning the dynamics of resting-state fMRI directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction.


2021 ◽  
Author(s):  
Kevin J. Wischnewski ◽  
Simon B. Eickhoff ◽  
Viktor K. Jirsa ◽  
Oleksandr V. Popovych

Abstract Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.


2021 ◽  
pp. 1-55
Author(s):  
Igor Fortel ◽  
Mitchell Butler ◽  
Laura E. Korthauer ◽  
Liang Zhan ◽  
Olusola Ajilore ◽  
...  

Abstract Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macro-scale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics; wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.


Sign in / Sign up

Export Citation Format

Share Document