gas mixture
Recently Published Documents


TOTAL DOCUMENTS

3271
(FIVE YEARS 628)

H-INDEX

61
(FIVE YEARS 11)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122920
Author(s):  
Alireza Kakoee ◽  
Ayat Gharehghani ◽  
Mohsen Mostafei

2022 ◽  
Vol 430 ◽  
pp. 132671
Author(s):  
Zhi-Hao Liu ◽  
Han-Zhuo Xu ◽  
Yan-Bin Li ◽  
Yong Luo ◽  
Liang-Liang Zhang ◽  
...  

Author(s):  
Alar Heinsaar ◽  
Indrek Kivi ◽  
Priit Moller ◽  
Kuno Kooser ◽  
Tanel Käämbre ◽  
...  

Abstract (La0.6Sr0.4)0.99CoO3−δ is a very promising cathode material due to its excellent electronic and ionic conductivity. However, when using non-artificial air from the ambient atmosphere, it contains impurities such as H2O and CO2. These chemicals cause degradation and performance loss of the cathode. Introduction of Ti into the B-site of (La0.6Sr0.4)0.99CoO3−δ improves the chemical stability of this material. (La0.6Sr0.4)0.99Co1−xTixO3−δ (0 ≤ x ≥ 0.1) electrodes prepared in this work were analyzed using X-ray diffraction method (XRD), X-ray photoelectron spectroscopy (XPS), and with electrochemical impedance spectroscopy (EIS). Studied (La0.6Sr0.4)0.99CoO3−δ materials with Ti in B-site showed reversible degradation under gas mixture with carbon dioxide addition. Under gas mixture with water addition, improved stability was observed for (La0.6Sr0.4)0.99Co1−xTixO3−δ materials with Ti in B-site compared to unmodified (La0.6Sr0.4)0.99CoO3−δ.


2022 ◽  
Vol 334 ◽  
pp. 04009
Author(s):  
Giovanni d’Andrea ◽  
Enrico Squizzato ◽  
Antonella Glisenti

Electrochemically active oxide-based anodes capable of working in Single-Chamber Solid Oxide Fuel Cells (SC-SOFCs) were developed. Their performance is related to the selectivity of the electrodes. Tests are carried out on lab-scale devices with YSZ pellets as solid electrolytes in electrolyte supported cells. Selecting methane as a fuel, a gas mixture in the ratio CH4/O2 = 2 was chosen. The Ni-YSZ (NiO:YSZ=60:40) anode was optimized through CeO2 nanocatalysts infiltration to enhance the anode catalytic activity and make its reduction easier. Several infiltration amounts were compared, from null to 15% of the electrode weight. Both symmetric and complete cells (with LSCF-based cathodes) were tested in H2 and CH4/O2. For increasing amounts of infiltrated CeO2, symmetric cells tests describe an area specific resistance (ASR) reduction from 40 Ω cm2 to 1.7 Ω cm2 in hydrogen and from 11 Ω cm2 to 3.9 Ω cm2 in the methane/oxygen mixture. While complete cells tests displayed an ASR drop from 30 Ω cm2 to 2.9 Ω cm2 in H2, and from 8.7 Ω cm2 to 4.3 Ω cm2 in the methane/oxygen mixture, while OCP and power grew from 478 mV and 3.7 mW cm-2 to 766 mV and 13 mW cm-2.


Sign in / Sign up

Export Citation Format

Share Document