elastic electron
Recently Published Documents


TOTAL DOCUMENTS

966
(FIVE YEARS 57)

H-INDEX

73
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 21
Author(s):  
Jelena Vukalović ◽  
Jelena B. Maljković ◽  
Francisco Blanco ◽  
Gustavo García ◽  
Branko Predojević ◽  
...  

We report the results of the measurements and calculations of the absolute differential elastic electron scattering cross-sections (DCSs) from sevoflurane molecule (C4H3F7O). The experimental absolute DCSs for elastic electron scattering were obtained for the incident electron energies from 50 eV to 300 eV, and for scattering angles from 25° to 125° using a crossed electron/target beams setup and the relative flow technique for calibration to the absolute scale. For the calculations, we have used the IAM-SCAR+I method (independent atom model (IAM) applying the screened additivity rule (SCAR) with interference terms included (I)). The molecular cross-sections were obtained from the atomic data by using the SCAR procedure, incorporating interference term corrections, by summing all the relevant atomic amplitudes, including the phase coefficients. In this approach, we obtain the molecular differential scattering cross-section (DCS), which, integrated over the scattered electron angular range, gives the integral scattering cross-section (ICS). Calculated cross-sections agree very well with experimental results, in the whole energy and angular range.


2021 ◽  
Author(s):  
Xiaoli Zhao ◽  
Kedong Wang

Abstract We present elastic electron scattering cross sections with holmethane molecules CH2Br2 and CCl2Br2 in the low energy region ranging from 0.01 to 20 eV. The calculations are performed with R-matrix method in static-exchange plus polarization (SEP) and close-coupling (CC) approximations. The integral, differential, and momentum transfer cross sections are calculated. The convergence of the obtained cross sections is checked at four different levels of SEP approximation. The predicted positions of the resonances agree well with available results. The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed. We found that the polarization has a substantial effect on the cross sections, and this effect becomes even more important for lower impact energies.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tim Jacobus Adrianus Staps ◽  
Marvin Igor van de Ketterij ◽  
Bart Platier ◽  
Job Beckers

AbstractDusty plasmas comprise a complex mixture of neutrals, electrons, ions and dust grains, which are found throughout the universe and in many technologies. The complexity resides in the chemical and charging processes involving dust grains and plasma species, both of which impact the collective plasma behavior. For decades, the orbital-motion-limited theory is used to describe the plasma charging of dust grains, in which the electron current is considered collisionless. Here we show that the electron (momentum transfer) collision frequency exceeds the electron plasma frequency in a powder-forming plasma. This indicates that the electron current is no longer collisionless, and the orbital-motion-limited theory may need corrections to account for elastic electron collisions. This implication is especially relevant for higher gas pressure, lower plasma density, and larger dust grain size and density.


2021 ◽  
Vol 19 (50) ◽  
pp. 60-69
Author(s):  
Shaimaa Ali Rahi ◽  
Gaith Naima Flaiyh

The two-neutron halo-nuclei (17B, 11Li, 8He) was investigated using a two-body nucleon density distribution (2BNDD) with two frequency shell model (TFSM). The structure of valence two-neutron of 17B  nucleus in a pure (1d5/2) state and in a pure (1p1/2) state for  11L and 8He nuclei. For our tested nucleus, an efficient (2BNDD's) operator for point nucleon system folded with two-body correlation operator's functions was used to investigate nuclear matter density distributions, root-mean square (rms) radii, and elastic electron scattering form factors. In the nucleon-nucleon forces the correlation took account of the effect for the strong tensor force (TC's). The wave functions of single particle harmonic oscillator are used with two different oscillator size parameters βc and βv, where the former is for the core (inner) orbits and the latter is for the valence (halo) orbits. The measured matter density distributions of these nuclei clearly showed long tail results. To investigate elastic electron scattering form factors the plane wave born approximation (PWBA) with two body nucleon density distribution (2BNDD's) was use.


2021 ◽  
Vol 18 (9) ◽  
pp. 096001
Author(s):  
I Dahiri ◽  
M Jakha ◽  
S Mouslih ◽  
B Manaut ◽  
S Taj ◽  
...  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
D. Androić ◽  
D. S. Armstrong ◽  
A. Asaturyan ◽  
K. Bartlett ◽  
R. S. Beminiwattha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document