bayesian clustering
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Denis Valle ◽  
Yusuf Jameel ◽  
Brenda Betancourt ◽  
Ermias T. Azeria ◽  
Nina Attias ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Arkadiusz Dziech

Significant development of genetic tools during the last decades provided opportunities for more detailed analyses and deeper understanding of species hybridization. New genetic markers allowed for reliable identification of admixed individuals deriving from recent hybridization events (a few generations) and those originating from crossings up to 19 generations back. Implementation of microsatellites (STRs) together with Bayesian clustering provided abundant knowledge regarding presence of admixed individuals in numerous populations and helped understand the problematic nature of studying hybridization (i.a., defining a reliable thresholds for recognizing individuals as admixed or obtaining well-grounded results representing actual proportion of hybrids in a population). Nevertheless, their utilization is limited to recent crossbreeding events. Single Nucleotide Polymorphisms (SNPs) proved to be more sensible tools for admixture analyses furnishing more reliable knowledge, especially for older generation backcrosses. Small sets of Ancestry Informative Markers (AIMs) of both types of markers were effective enough to implement in monitoring programs, however, SNPs seem to be more appropriate because of their ability to identify admixed individuals up to 3rd generations. The main aim of this review is to summarize abundant knowledge regarding identification of wolf-dog hybrids in Europe and discuss the most relevant problems relating to the issue, together with advantages and disadvantages of implemented markers and approaches.


2021 ◽  
Author(s):  
Marcel Glück ◽  
Julia C. Geue ◽  
Henri A. Thomassen

Background: The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. These species might falsely be considered panmictic and hence potentially mismanaged. Here we analysed the genetic structure in an economically important and widespread pollinator, the buff-tailed bumble bee (Bombus terrestris), which is considered to be quasi-panmictic at mainland continental scales. We first quantified population structure in Romania and Bulgaria with spatially implicit Fst and Bayesian clustering analyses. We then incorporated environmental information to infer the influence of the permeability of the habitat matrix between populations (resistance distances) as well as environmental differences among sites in explaining population divergence. Results: Genetic structure of the buff-tailed bumble bee was subtle and not detected by Bayesian clustering. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. Conclusions: Where in the past spatially implicit approaches had repeatedly failed, incorporating environmental data proved to be highly beneficial in detecting and unravelling the drivers of genetic structure in this vagile and opportunistic species. Indeed, structure followed a pattern of isolation by environment, where the establishment of dispersers is limited by environmental differences among populations, resulting in the disruption of genetic connectivity and the divergence of populations through genetic drift and divergent natural selection. With this work, we highlight the potential of incorporating environmental differences among population locations to complement the more traditional approach of isolation by geographic distance, in order to obtain a holistic understanding of the processes driving structure in natural populations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254376
Author(s):  
Carmen Julia Figueredo-Urbina ◽  
Gonzalo D. Álvarez-Ríos ◽  
Mario Adolfo García-Montes ◽  
Pablo Octavio-Aguilar

The agaves are plants of cultural importance which have been used by humans for about 10,000 years and about 40 specific uses. The most culturally and economically important of those uses are for the production of fermented (pulque) and distilled beverages (mescal). Pulque continues to be produced in nearly all of Mexico, and the agaves used for this purpose have shown domestication syndrome. We carry out an ethnobotanical, morphological, and genetic analysis of the traditional varieties of pulque agave used in the production of aguamiel (agave sap) and pulque in the state of Hidalgo. We did semi-structured interviews, free listings, and tours with 11 agave managers. We analyzed morphology and studied genetic diversity and structure using nuclear microsatellites. We found wild-collected, tolerated, transplanted, and cultivated varieties of agave. This comprised 19 traditional varieties of pulque agave, 12 of them in production during the study, which corresponded to the species Agave americana, A. salmiana y A. mapisaga and five intraspecific entities. The varieties were grouped morphologically according to a management gradient; the wild-collected varieties were the smallest, with more lateral teeth and a larger terminal spine. The cultivated varieties clearly exhibited domestication syndrome, with larger plants and smaller dentition. The expected heterozygosity (He) of the varieties ranged from 0.204 to 0.721. Bayesian clustering suggested the existence of three genetic groups, both at the level of traditional varieties of pulque agaves and for management categories, a result that matches multivariate clustering. Pulque producers in the studied localities maintain high agrobiodiversity. The cultivated varieties exhibit domestication syndrome, as has been reported for other species of the genus with the same selection purposes. Our results support the hypothesis of a decrease in genetic diversity in crops compared to wild-growing agaves, which seems to be due to vegetative propagation, among other factors.


Biometrics ◽  
2021 ◽  
Author(s):  
Henry R. Scharf ◽  
Ann M. Raiho ◽  
Sierra Pugh ◽  
Carl A. Roland ◽  
David K. Swanson ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Daniel Kang ◽  
Christopher S Coffey ◽  
Brian J Smith ◽  
Ying Yuan ◽  
Qian Shi ◽  
...  

AoB Plants ◽  
2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Dong-Pil Jin ◽  
Jong-Soo Park ◽  
Byoung-Hee Choi

Abstract Various plant species are endemic to the Korean Peninsula, but their evolutionary divergence and establishment are poorly understood. One of these, Lespedeza maritima, has been proposed as either a hybrid (L. cyrtobotrya × L. maximowiczii) or a synonym of L. thunbergii. A distinct taxon, L. uekii, has been proposed for inland populations. We investigated genetic diversity and structure in L. maritima and related taxa to resolve this. Genotypes of L. maritima (n = 244, including L. uekii) were determined using 12 microsatellite loci, then compared with those of related species. Genetic diversity within L. maritima was estimated, and Bayesian clustering analysis was used to represent its genetic structure and that of related taxa. Its distribution during the last glacial maximum (LGM) was predicted using ecological niche modelling (ENM). Neighbour-joining (NJ) analysis and principal coordinate analysis (PCoA) were used to investigate relationships among species. Bayesian tree based on nuclear ribosomal internal transcribed spacers (nrITS) was also reconstructed to show relationships and divergence time among species. Morphological features were examined using flower characteristics. In result, expected heterozygosity (HE) and allelic richness (AR) within L. maritima were higher in southern than northern populations. Bayesian clustering analysis largely assigned populations to two clusters (K = 2) (south vs. north). The ENM showed that L. maritima occurred around the East China Sea and Korean Strait land bridge during the LGM. Compared with other Lespedeza species, L. maritima was assigned to an independent cluster (K = 2–5), supported by the NJ, PCoA, Bayesian tree and morphological examination results. Lespedeza maritima and L. uekii were clustered to one clade on Bayesian tree. Given results, current L. maritima populations derive from post-LGM colonization away from southern refugia. The type L. uekii, which grows inland, is thought synonym of L. maritima. In addition, L. maritima is considered a distinct species, compared with related taxa.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 168
Author(s):  
Johanna Delgado-Acevedo ◽  
Angeline Zamorano ◽  
Randy W. DeYoung ◽  
Tyler A. Campbell

Wild pigs (Sus scrofa) alter ecosystems, affect the economy, and carry diseases that can be transmitted to livestock, humans, and wildlife. Understanding wild pig movements and population structure data, including natural population boundaries and dispersal, may potentially increase the efficiency and effectiveness of management actions. We trapped, conducted aerial shootings, and hunted wild pigs from 2005 to 2009 in southern Texas. We used microsatellites to assist large-scale applied management. We quantify broad-scale population structure among 24 sites across southern Texas by computing an overall FST value, and a Bayesian clustering algorithm both with and without considering the spatial location of samples. At a broad geographic scale, pig populations displayed a moderate degree of genetic structure (FST = 0.11). The best partition for number of populations, based on 2nd order rate of change of the likelihood distribution, was K = 10 genetic clusters. The spatially explicit Bayesian clustering algorithm produced similar results, with minor differences in designation of admixed sites. We found evidence of past (and possibly ongoing) translocations; many populations were admixed. Our original goal was to identify landscape features, such as barriers or dispersal corridors, that could be used to aid management. Unfortunately, the extensive admixture among clusters made this impossible. This research shows that large-scale management of wild pigs may be necessary to achieve control and ameliorate damages. Reduction or cessation of translocations is necessary to prevent human-mediated dispersion of wild pigs.


Sign in / Sign up

Export Citation Format

Share Document