topological errors
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 12)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
H. Rashidan ◽  
A. Abdul Rahman ◽  
I. A. Musliman ◽  
G. Buyuksalih

Abstract. 3D city models are increasingly being used to represent the complexity of today’s urban areas, as they aid in understanding how different aspects of a city can function. For instance, several municipalities and governmental organisations have constructed their 3D city models for various purposes. These 3D models, which are normally complex and contain semantics information, have typically been used for visualisation and visual analysis purposes. However, most of the available 3D models open datasets contain many geometric and topological errors, e.g., missing surfaces (holes), self-intersecting surfaces, duplicate vertices, etc. These errors prevent the datasets from being used for advanced applications such as 3D spatial analysis which requires valid datasets and topology to calculate its volume, detect surface orientation, area calculation, etc. Therefore, certain repairs must be done before taking these models into actual applications, and hole-filling (of missing surfaces) is an important one among them. Several studies on the topic of automatic repair of the 3D model have been conducted by various researchers, with different approaches have been developed. Thus, this paper describes a triangular mesh approach for automatically repair invalid (missing surfaces) 3D building model (LOD2). The developed approach demonstrates an ability to repair missing surfaces (with holes) in a 3D building model by reconstructing geometries of the holes of the affected model. The repaired model is validated and produced a closed-two manifold model.


Author(s):  
Niels Breckwoldt ◽  
Thore Posske ◽  
Michael Thorwart

Abstract Braiding Majorana zero-modes around each other is a promising route towards topological quantum computing. Yet, two competing maxims emerge when implementing Majorana braiding in real systems: On the one hand, perfect braiding should be conducted adiabatically slowly to avoid non-topological errors. On the other hand, braiding must be conducted fast such that decoherence effects introduced by the environment are negligible, which are generally unavoidable in finite-size systems. This competition results in an intermediate time scale for Majorana braiding that is optimal, but generally not error-free. Here, we calculate this intermediate time scale for a T-junction of short one-dimensional topological superconductors coupled to a bosonic bath that generates fluctuations in the local electric potential, which stem from, e.g., environmental photons or phonons of the substrate. We thereby obtain boundaries for the speed of Majorana braiding with a predetermined gate fidelity. Our results emphasize the general susceptibility of Majorana-based information storage in finite-size systems and can serve as a guide for determining the optimal braiding times in future experiments.


Author(s):  
Seyed Mostafa Mousavi Kahaki ◽  
Hang Deng ◽  
Armen Stepanyants
Keyword(s):  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ulrich Lautenschlager ◽  
Florian Wagner ◽  
Christoph Oberprieler

Abstract Background Inferring phylogenetic relationships of polyploid species and their diploid ancestors (leading to reticulate phylogenies in the case of an allopolyploid origin) based on multi-locus sequence data is complicated by the unknown assignment of alleles found in polyploids to diploid subgenomes. A parsimony-based approach to this problem has been proposed by Oberprieler et al. (Methods Ecol Evol 8:835–849, 2017), however, its implementation is of limited practical value. In addition to previously identified shortcomings, it has been found that in some cases, the obtained results barely satisfy the applied criterion. To be of better use to other researchers, a reimplementation with methodological refinement appears to be indispensable. Results We present the AllCoPol package, which provides a heuristic method for assigning alleles from polyploids to diploid subgenomes based on the Minimizing Deep Coalescences (MDC) criterion in multi-locus sequence datasets. An additional consensus approach further allows to assess the confidence of phylogenetic reconstructions. Simulations of tetra- and hexaploids show that under simplifying assumptions such as completely disomic inheritance, the topological errors of reconstructed phylogenies are similar to those of MDC species trees based on the true allele partition. Conclusions AllCoPol is a Python package for phylogenetic reconstructions of polyploids offering enhanced functionality as well as improved usability. The included methods are supplied as command line tools without the need for prior programming knowledge.


Author(s):  
Y. Li ◽  
B. Wu

Abstract. Automatic 3D building reconstruction from laser scanning or photogrammetric point clouds has gained increasing attention in the past two decades. Although many efforts have been made, the complexity of buildings and incompletion of point clouds, i.e., data missing, still make it a challenging task for automatic 3D reconstruction of buildings in large-scale urban scenes with various architectural styles. This paper presents an innovative approach for automatic generation of 3D models of complex buildings from even incomplete point clouds. The approach first decomposes the 3D space into multiple space units, including 3D polyhedral cells, facets and edges, where the facets and edges are also encoded with topological-relation constraints. Then, the units and constraints are used together to approximate the buildings. On one hand, by extracting facets from 3D cells and further extracting edges from facets, this approach simplifies complicated topological computations. On the other hand, because this approach models buildings on the basis of polyhedral cells, it can guarantee that the models are manifold and watertight and avoid correcting topological errors. A challenging dataset containing 105 buildings acquired in Central, Hong Kong, was used to evaluate the performance of the proposed approach. The results were compared with two previous methods and the comparisons suggested that the proposed approach outperforms other methods in terms of robustness, regularity, and accuracy of the models, with an average root-mean-square error of less than 0.9 m. The proposed approach is of significance for automatic 3D modelling of buildings for urban applications.


2020 ◽  
Author(s):  
Christian O’Reilly ◽  
Eric Larson ◽  
John E. Richards ◽  
Mayada Elsabbagh

AbstractElectroencephalographic (EEG) source reconstruction is a powerful approach that helps to unmix scalp signals, mitigates volume conduction issues, and allows anatomical localization of brain activity. Algorithms used to estimate cortical sources require an anatomical model of the head and the brain, generally reconstructed using magnetic resonance imaging (MRI). When such scans are unavailable, a population average can be used for adults, but no average surface template is available for cortical source imaging in infants. To address this issue, this paper introduces a new series of 12 anatomical models for subjects between zero and 24 months of age. These templates are built from MRI averages and volumetric boundary element method segmentation of head tissues available as part of the Neurodevelopmental MRI Database. Surfaces separating the pia mater, the gray matter, and the white matter were estimated using the Infant FreeSurfer pipeline. The surface of the skin as well as the outer and inner skull surfaces were extracted using a cube marching algorithm followed by Laplacian smoothing and mesh decimation. We post-processed these meshes to correct topological errors and ensure watertight meshes. The use of these templates for source reconstruction is demonstrated and validated using 100 high-density EEG recordings in 7-month-old infants. Hopefully, these templates will support future studies based on EEG source reconstruction and functional connectivity in healthy infants as well as in clinical pediatric populations. Particularly, they should make EEG-based neuroimaging more feasible in longitudinal neurodevelopmental studies where it may not be possible to scan infants at multiple time points.Graphical abstractHighlightsTwelve surface templates for infants in the 0-2 years old range are proposedThese templates can be used for EEG source reconstruction using existing toolboxesA relatively modest impact of age differences was found in this age rangeCorrelation analysis confirms increasing source differences with age differencesSources reconstructed with infants versus adult templates significantly differ


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 534 ◽  
Author(s):  
Yuan He ◽  
Shunyi Zheng ◽  
Fengbo Zhu ◽  
Xia Huang

The truncated signed distance field (TSDF) has been applied as a fast, accurate, and flexible geometric fusion method in 3D reconstruction of industrial products based on a hand-held laser line scanner. However, this method has some problems for the surface reconstruction of thin products. The surface mesh will collapse to the interior of the model, resulting in some topological errors, such as overlap, intersections, or gaps. Meanwhile, the existing TSDF method ensures real-time performance through significant graphics processing unit (GPU) memory usage, which limits the scale of reconstruction scene. In this work, we propose three improvements to the existing TSDF methods, including: (i) a thin surface attribution judgment method in real-time processing that solves the problem of interference between the opposite sides of the thin surface; we distinguish measurements originating from different parts of a thin surface by the angle between the surface normal and the observation line of sight; (ii) a post-processing method to automatically detect and repair the topological errors in some areas where misjudgment of thin-surface attribution may occur; (iii) a framework that integrates the central processing unit (CPU) and GPU resources to implement our 3D reconstruction approach, which ensures real-time performance and reduces GPU memory usage. The proposed results show that this method can provide more accurate 3D reconstruction of a thin surface, which is similar to the state-of-the-art laser line scanners with 0.02 mm accuracy. In terms of performance, the algorithm can guarantee a frame rate of more than 60 frames per second (FPS) with the GPU memory footprint under 500 MB. In total, the proposed method can achieve a real-time and high-precision 3D reconstruction of a thin surface.


Author(s):  
Marco Rossoni ◽  
Giorgio Colombo

Abstract This paper presents a preliminary investigation on the workflow that allows to replicate object by using 3D laser scanner and a desktop fused filament fabrication 3D printer. Pitfalls and limitations of those technologies will be pointed out in order to find the bottleneck of the workflow, paying specific attention to what concerns the digital workflow from the acquisition to the generation of the g-code. The findings and conclusions are drawn from a case study that has been carried out using the minimum amount of human intervention, especially during the digital postprocessing of the data. The objects under investigation is a broken car door handle. Firstly, it has been digitalized using a 3D laser scanner properly calibrated and set. The accuracy, precision and resolution of the measurement tool have been recorded and the as-is acquired data has been checked against topological errors. The as-is acquired model has been compared with the original geometry. The 3d polygonal mesh has been prepared for being printed: the material, machine and process parameters have been chosen. A simulation of the deposition process to estimate warps and deviation from the nominal geometry was carried out. Finally, the object has been additively manufactured using a desktop Fused Filament Fabrication machine: the printed object has been again compared with the original geometry.


Sign in / Sign up

Export Citation Format

Share Document